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Abstract
We consider immediate predictive inference, where a sub-
ject, using a number of observations of a finite number
of exchangeable random variables, is asked to coherently
model his beliefs about the next observation, in terms of
a predictive lower prevision. We study when such predic-
tive lower previsions are representation insensitive, mean-
ing that they are essentially independent of the choice of
the (finite) set of possible values for the random variables.
Such representation insensitive predictive models have very
interesting properties, and among such models, the ones
produced by the Imprecise Dirichlet-Multinomial Model
are quite special in a number of ways.
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1 Introduction

Consider a subject who is making N > 0 successive ob-
servations of a certain phenomenon. We represent these
observations by N random variables X1, . . . , XN . By ran-
dom variable, we mean a variable about whose value the
subject may entertain certain beliefs. We assume that at
each successive instant k, the actual value of the random
variables Xk can be determined in principle. To fix ideas,
our subject might be drawing balls without replacement
from an urn, in which case Xk could designate the colour
of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our
subject in some way uses zero or more observations
X1, . . . , Xn made previously, i.e., those up to a certain in-
stant n ∈ {0,1, . . . ,N−1}, to predict, or make inferences
about, the values of the future, or as yet unmade, observa-
tions Xn+1, . . . , XN . Here, we only consider the problem of
immediate prediction: he is only trying to predict, or make
inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,
before making any observation, our subject knows very
little or nothing about what produces these observations. In
the urn example, this is the situation where he doesn’t know
the composition of the urn, e.g., how many balls there are,
or what their colours are. What we do assume, however, is
that our subject makes an assessment of exchangeability to
the effect that the order in which a sequence of observations
has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-
termine, beforehand, a (finite and non-empty) set X of
possible values, also called categories, for the random vari-
ables Xk. It is then sometimes held, especially by advo-
cates of a logical interpretation for probability, that our
subject’s beliefs should be represented by some given fam-
ily of predictive probability mass functions. Such a pre-
dictive family is made up of real-valued maps pn+1

X (·|x)
on X , which give, for each n = 0, . . . ,N − 1 and each
x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-
bility mass function for the (n + 1)-th observation, given
the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-
ous observations. Any such family should in particular
reflect the above-mentioned exchangeability assessment.
Cases in point are the Laplace–Bayes Rule of Succession
in the case of two categories [10], or Carnap’s more general
λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-
ample, can strongly depend on the number of elements in
the set X . This may well be considered undesirable. If for
instance, we consider drawing balls from an urn, predictive
inferences about whether the next ball will be ‘red or green’
ideally should not depend on whether we assume before-
hand that the possible categories are ‘red’, ‘green’, ‘blue’
and ‘any other colour’, or whether we take them to be ‘red
or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This
desirable property was called representation invariance by
Peter Walley [14], who argued that it cannot be satisfied
by a precise probability model, i.e., by a system consist-
ing of a family of predictive probability mass functions
pn+1

X (·|x) for every X , but that it is satisfied by the so-



called Imprecise Dirichlet-Multinomial Model (or IDMM
for short [15]). The IDMM can be seen as a special system
of predictive lower previsions and it is a (predictive) cousin
of the parametric Imprecise Dirichlet Model (or IDM [14]).
Lower previsions are behavioural belief models that gener-
alise the more classical Bayesian ones, such as probability
mass functions, or previsions. We assume that the reader
is familiar with at least the basic aspects of the theory of
coherent lower previsions [13].

Here, we intend to study general systems of such predictive
lower previsions. In Section 2, we give a general definition
of such predictive systems and study a number of properties
they can satisfy, such as coherence and exchangeability. In
Section 3, we study the property of representation insen-
sitivity for predictive systems, which is a stronger version
of Walley’s representation invariance, tailored to making
inferences under prior ignorance. We show in Section 4
that there are representation insensitive and exchangeable
predictive systems, by giving two examples. These two can
be used to generate the mixing predictive systems, stud-
ied in Section 5. Among these, the ones corresponding to
an IDMM take a special place, as they are the only ones
to satisfy all the above-mentioned properties and an extra
specificity property, related to behaviour under condition-
ing. In the Conclusions (Section 6), we list a number of
interesting, but as of yet unresolved, questions.

2 Predictive families and systems

2.1 Families of predictive lower previsions

First assume that, before the subject starts making the
observations Xk, he fixes a non-empty and finite set X
of possible values for all the random variables Xk. Now
suppose that he has observed the sequence of values
x = (x1, . . . ,xn) ∈ X n of the first n random variables, or
in other words, he knows that Xk = xk for k = 1, . . . ,n. We
want to represent his beliefs about the value of the next
observation Xn+1, and the model we propose for this is a
lower prevision Pn+1

X (·|x) on the set L (X ) of all gam-
bles on X . Let us first make clear what this means (see
Walley’s book [13] for more information).

A gamble f on X is a real-valued map on X . It represents
an uncertain reward, expressed in terms of some predeter-
mined linear utility scale. So a gamble f yields a (possibly
negative) reward of f (x) utiles if the value of the next vari-
able Xn+1 turns out to be the category x in X . The set of
all gambles on X is denoted by L (X ). The lower pre-
vision Pn+1

X ( f |x) of any gamble f on X is the subject’s
supremum acceptable price for buying this gamble, or in
other words, the highest s such that he accepts the uncer-
tain reward f (Xn+1)− p for all p < s, conditional on his
having observed the values x = (x1, . . . ,xn) for the first n
variables (X1, . . . ,Xn). His corresponding predictive upper

prevision, or infimum selling price for f , is then given by
the conjugacy relationship: Pn+1

X ( f |x) =−Pn+1
X (− f |x).

A specific class of gambles is related to events, i.e., sub-
sets A of X . This is the class of indicators IA that map
any element of A to one and all other elements of X to
zero. We identify events A with their indicators IA. A lower
prevision that is defined on (indicators of) events only is
called a lower probability, and we often write Pn+1

X (A|x)
instead of Pn+1

X (IA|x).

The predictive lower prevision Pn+1
X (·|x), which models be-

liefs about the value of the random variable Xn+1 given the
observations (X1, . . . ,Xn) = x, is the real-valued functional
on L (X ) that assigns to any gamble f its predictive lower
prevision Pn+1

X ( f |x). We assume that the subject has such
a predictive lower prevision Pn+1

X (·|x) for all x in X n and
all n ∈ {0, . . . ,N−1}, where N > 0 is some fixed positive
integer, representing the total number of observations we
are interested in. For n = 0, there is some slight abuse of
notation here, because we then actually have an uncondi-
tional predictive lower prevision P1

X on L (X ) for the
first observation X1, and no observations have yet been
made.

Definition 1 (Family of predictive lower previsions). Con-
sider a finite and non-empty set of categories X . An
X -family of predictive lower previsions, or predictive
X -family for short, for up to N > 0 observations is a
set of predictive lower previsions

σ
N
X :=

{
Pn+1

X (·|x) : x ∈X n and n = 0, . . . ,N−1
}

.

It is useful to consider the special case, quite common in
the literature, of a family of predictive lower previsions of
which all members Pn+1

X (·|x) are actually linear previsions
Pn+1
X (·|x). This means that for each n = 0, . . . ,N−1 and x

in X n there is some predictive (probability) mass function
pn+1

X (·|x) on X such that ∑z∈X pn+1
X (z|x) = 1, for all z

in X , pn+1
X (z|x)≥ 0, and for all gambles f on X

Pn+1
X ( f |x) = ∑

z∈X

f (z)pn+1
X (z|x).

Such linear previsions are the Bayesian belief models
usually encountered in the literature (see for instance de
Finetti’s book [7]). We can use Bayes’s rule to combine
these predictive mass functions into unique joint mass func-
tions pn

X on X n :=×n
i=1X , given by

pn
X (x) = pn

X (x1, . . . ,xn) =
n−1

∏
k=0

pk+1
X (xk+1|x1, . . . ,xk),

for all x = (x1, . . . ,xn) in X n and all n = 1, . . . ,N. This
also results in unique corresponding linear previsions (ex-
pectation operators) Pn

X defined for all f in L (X n) by

Pn
X ( f ) = ∑

x∈X n
f (x)pn

X (x). (1)



For n = N, we call PN
X the joint linear prevision associated

with the given predictive family of linear previsions. It
models beliefs about the values that the random variables
(X1, . . . ,XN) assume jointly in X N .

2.2 Systems of predictive lower previsions

When a subject is using a family of predictive lower previ-
sions σN

X , this means he has assumed beforehand that the
random variables X1, . . . , XN all take values in the set X .
It cannot, therefore, be excluded at this point that his in-
ferences, as represented by the predictive lower previsions
Pn+1

X (·|x), strongly depend on the choice of the set of pos-
sible values X . Any initial choice of X may lead to an
essentially very different predictive family σN

X . In order to
be able to deal with this possible dependence mathemati-
cally, we now define predictive systems as follows.

Definition 2 (System of predictive lower previsions). Fix
N > 0. If we consider for any finite and non-empty set of
categories X a corresponding X -family σN

X of predictive
lower previsions Pn+1

X (·|x), we get a new collection

σ
N :=

{
σ

N
X : X is a finite and non-empty set

}
,

called a system of predictive lower previsions, or predictive
system for short, for up to N observations. We denote the
set of all predictive systems for a given (fixed) N by ΣN .

It is such predictive systems that we are interested in, and
whose properties we intend to study. Consider the set ΣN

of all predictive systems for up to N observations. For
two such predictive systems σN and λ N we say that σN

is less committal, or more conservative, than λ N , and we
denote this by σN � λ N , if each predictive lower prevision
Pn+1

X (·|x) in σN is point-wise dominated by the correspond-
ing predictive lower prevision Qn+1

X
(·|x) in λ N :

Pn+1
X ( f |x)≤ Qn+1

X
( f |x)

for all gambles f on X . The reason for this terminology
should be clear: a subject using a predictive system λ N

will then be buying gambles f on X at supremum prices
Qn+1

X
( f |x) that are at least as high as the supremum prices

Pn+1
X ( f |x) of a subject using predictive system σN .

The binary relation � on ΣN is a partial order. A non-empty
subset

{
σN

γ : γ ∈ Γ
}

of ΣN (where Γ is some index set)
may have an infimum with respect to this partial order,
and whenever it exists, this infimum corresponds to taking
lower envelopes: if we fix X , n and x, then the correspond-
ing predictive lower prevision in the infimum predictive
system is the lower envelope infγ∈Γ Pn+1

X ,γ(·|x) of the cor-
responding predictive lower previsions Pn+1

X ,γ(·|x) in the
predictive systems σN

γ , γ ∈ Γ.

2.3 Coherence requirements

We impose some consistency, or rationality, requirements
on the members Pn+1

X (·|x) of a system σN of predictive
lower previsions.

Definition 3 (Coherence). A system of predictive lower
previsions is called coherent if it is the infimum (or lower
envelope) of a collection of systems of predictive linear
previsions.

This condition is equivalent to requiring, for each choice
of X , that the conditional lower previsions Pn+1

X (·|x) for
n = 0, . . . ,N−1 and x∈X n should satisfy Walley’s (joint)
coherence condition.1 This condition is in the present con-
text also equivalent [12] to requiring that the predictive
lower previsions Pn+1

X (·|x) by themselves should be (sep-
arately) coherent, meaning that for each finite and non-
empty set X , n = 0, . . . ,N−1 and x in X n, Pn+1

X (·|x)
should satisfy

(C1) Pn+1
X ( f |x)≥ inf f ;

(C2) Pn+1
X ( f +g|x)≥ Pn+1

X ( f |x)+Pn+1
X (g|x);

(C3) Pn+1
X (λ f |x) = λPn+1

X ( f |x);

for all gambles f and g on X and all real λ ≥ 0.

2.4 Exchangeability and regular exchangeability

Next, we show how to formulate an assessment of exchange-
ability of the random variables X1, . . . , XN in terms of a
system of predictive lower previsions. A subject would
make such an assessment if he believed that the order in
which these variables are observed is not important. Let us
make this idea more precise.

We begin with the definition of exchangeability for a precise
predictive system, i.e., a system of predictive linear previ-
sions. For each choice of X , the precise X -family σN

X
has a unique joint linear prevision PN

X on L (X N), de-
fined by Equation (1). We then call the precise predic-
tive system exchangeable if all the associated joint lin-
ear previsions PN

X are. Formally [5, 7], consider the set
of all permutations of {1, . . . ,N}. With any such permu-
tation π we can associate a permutation of X N , also
denoted by π , that maps any x = (x1, . . . ,xN) in X N

to πx := (xπ(1), . . . ,xπ(N)). Similarly, with any gamble f
on X N , we can consider the permuted gamble π f := f ◦π ,
or in other words (π f )(x) = f (πx). We then require that
PN
X (π f ) = PN

X ( f ) for any such permutation π and any
gamble f on X N . Equivalently, in terms of the joint mass

1See Chapters 6 and 7, and also Section K3 (Williams’s Theorem) in
Walley’s book [13]. Since the random variables Xk are assumed to only
take on a finite number of values, Walley’s coherence condition coincides
with the one first suggested by Williams [16].



function pN
X , we require that pN

X (πx) = pN
X (x) for all x

in X N and all permutations π .

We adopt the following definition of exchangeability for
general predictive systems.
Definition 4 (Exchangeability). A system of predictive
lower previsions is called exchangeable if it is the infimum
(or lower envelope) of a collection of exchangeable systems
of predictive linear previsions. We denote by 〈ΣN

e ,�〉 the
set of all exchangeable predictive systems for up to N ob-
servations, with the same order relation � that we defined
on 〈ΣN ,�〉.

The infimum (lower envelope) of any non-empty collection
of exchangeable predictive systems is still exchangeable.
This means that the partially ordered set 〈ΣN

e ,�〉 is a com-
plete semi-lattice [3, Sections 3.19–3.20]. For reasons of
mathematical convenience, we also introduce a stronger
requirement.
Definition 5 (Regular exchangeability). A system of pre-
dictive lower previsions is called regularly exchangeable
if it is the infimum (or lower envelope) of some collection
σN

γ , γ ∈ Γ of exchangeable systems of predictive linear
previsions, such that for all finite and non-empty X , all x
in X N−1, and all γ in Γ,

pN−1
X ,γ (x) :=PN

X ,γ({x}×X )

=
N−2

∏
k=0

pk+1
X ,γ(xk+1|x1, . . . ,xk) > 0.

Of course, all regularly exchangeable predictive sys-
tems are in particular also exchangeable and coherent.
A precise exchangeable predictive system is regularly
exchangeable if and only if pN−1

X (x1, . . . ,xN−1) > 0 for
all (x1, . . . ,xN−1) ∈X N−1 and all finite and non-empty
sets X . This shows that regular exchangeability is a stricter
requirement than exchangeability.

The term regular here reminds of the notion of regular
extension considered by Walley in [13]. In a regularly ex-
changeable predictive system every predictive lower previ-
sion Pn+1

X (·|x) is the lower envelope of the predictive linear
previsions Pn+1

X ,γ(·|x), which can be uniquely derived from
the joint linear previsions PN

X ,γ by applying Bayes’s rule:

Pn+1
X ,γ( f |x) =

PN
X ,γ( f I{x}×X N−n)

PN
X ,γ({x}×X N−n)

for every gamble f ∈ L (X ) and sample x ∈X n, or
equivalently,

pn+1
X ,γ(z|x) =

pn+1
X ,γ(x,z)

pn
X ,γ(x)

for all z ∈X and x ∈X n, because the probability
pn

X ,γ(x) := PN
X ,γ({x}×X N−n) of the conditioning event

is non-zero.

In regularly exchangeable predictive systems, the number
of times

Tz(x) := |{k ∈ {1, . . . ,n} : xk = z}|

that a given category z in X has been observed in some
sample x ∈X n of length 0 ≤ n ≤ N, is of special impor-
tance. This leads us to consider the counting map TX that
maps samples x of length n to the X -tuple TX (x) whose
components are Tz(x), z ∈X . TX (x) tells us how many
times each of the elements of X appears in the sample x,
and as x varies over X n, TX (x) assumes all values in the
set of count vectors N n

X :=
{
m ∈ NX

0 : ∑z∈X mz = n
}

. It
is easy to see that any two samples x and y of length n have
the same count vector TX (x) = TX (y) if and only if there
is some permutation π of {1, . . . ,n} such that y = πx.

Proposition 1. In any precise exchangeable predictive
system σN , consider any finite and non-empty set X ,
0 ≤ n ≤ N − 1, and samples x and y in X n such that
TX (x) = TX (y). Then pn

X (x) = pn
X (y) and moreover,

if pn
X (x) = pn

X (y) > 0, then also Pn+1
X (·|x) = Pn+1

X (·|y).

In any regularly exchangeable predictive system, the pre-
dictive lower previsions Pn+1

X (·|x) only depend on the
sample x through its count vector m = TX (x): for any
other sample y such that TX (y) = m, it holds that
Pn+1

X (·|x) = Pn+1
X (·|y) and we use the notation Pn+1

X (·|m)
for Pn+1

X (·|x) in order to reflect this. In fact, from now on
we only consider predictive systems—be they regularly
exchangeable or not—for which the predictive lower previ-
sions only depend on the observed samples through their
count vectors, i.e., for which the count vectors are sufficient
statistics.

One important reason for introducing regular exchangeabil-
ity, is that it allows us to prove the following inequality,
which has far-reaching consequences and which shall be
used in Section 5.2. We denote by ez the count vector
in N 1

X whose z-component is one and all of whose other
components are zero; it corresponds to the case where we
have a single observation which is of a category z in X .

Proposition 2. In any regularly exchangeable predictive
system, it holds that

Pn+1
X ( f |m)≥ Pn+1

X (Pn+2
X ( f |m+e·)|m)

for all finite and non-empty sets X , all 0 ≤ n ≤ N − 2,
all m in N n

X and all gambles f on X .

Here Pn+2
X ( f |m+e·) denotes the gamble on X that as-

sumes the value Pn+2
X ( f |m + ez) in z ∈ X . It can be

checked that the above inequality is an equality for pre-
cise regularly exchangeable predictive systems. The result
follows then by taking lower envelopes.



3 Representation invariance and
representation insensitivity

We are ready to consider Walley’s notion of representation
invariance; see his IDM paper [14] for more detailed discus-
sion and motivation. While its definition seems to be fairly
involved in case of general predictive inference, we shall
see that it takes on a remarkably simple and intuitive form
in the more special case of immediate prediction.

Representation invariance could also, and perhaps prefer-
ably so, be called pooling invariance. Consider a set of
categories X , and a partition S of X . Each element S
of such a partition corresponds to a single new category,
that consists of all the elements x ∈ S being pooled, i.e.,
considered as one. Denote by S(x) the unique element of
the partition S that a category x∈X belongs to. Now con-
sider a gamble f on X that doesn’t differentiate between
pooled categories, or in other words, that is constant on the
elements of S . This f can be seen as a gamble f̃ on the set
of categories S , such that f̃ (S(x)) := f (x) for all x ∈X .
Similarly, with a sample x = (x1, . . . ,xn)∈X n, there corre-
sponds a sample S(x) :=(S(x1), . . . ,S(xn))∈S n of pooled
categories. We consider S as a new set of categories, and
representation invariance now requires that

Pn+1
S ( f̃ |S(x)) = Pn+1

X ( f |x),

i.e., for gambles that do not differentiate between pooled
categories, it should not matter whether we consider pre-
dictive inferences for the set of original categories X , or
for the set of pooled categories S .

We are especially interested in predictive inference where
a subject starts from a state of prior ignorance. In such a
state, he has no reason to distinguish between the differ-
ent elements of any set of categories X he has chosen.
How can this be expressed in terms of predictive lower
previsions? Consider a permutation ϖ of the elements of
X .2 With any gamble f on X , there corresponds a per-
muted gamble ϖ f = f ◦ϖ . Similarly, with an observed
sample x in X n, there corresponds a permuted sample
ϖx = (ϖ(x1), . . . ,ϖ(xn)). If a subject has no reason to dis-
tinguish between categories z and their images ϖz, this
means that

Pn+1
X (ϖ f |x) = Pn+1

X ( f |ϖx).

We call this property category permutation invariance.3

We call representation insensitivity the combination of
both representation invariance and category permutation

2This permutation ϖ of the elements of X , or in other words of the
categories, should be contrasted with the permutation π of the order of
the observations, i.e., of the time set {1, . . . ,N}, considered in Section 2.4
in order to define exchangeability.

3It is related to the notion of (weak) permutation invariance that two
of us studied in much detail in a paper [4] dealing with general issues of
symmetry in uncertainty modelling.

invariance. It means that predictive inferences remain es-
sentially unchanged when we transform the set of cate-
gories, or in other words that they are essentially insen-
sitive to the choice of representation, i.e., category set.
To make this more explicit, consider two non-empty and
finite sets of categories X and Y , and a so-called re-
labeling map ρ : X → Y that is onto, i.e., such that
Y = ρ(X ) := {ρ(x) : x ∈X }. Then with any gamble
f on Y there corresponds a gamble ρ f := f ◦ ρ on X .
Similarly, with an observed sample x in X n, there cor-
responds a transformed sample ρx = (ρ(x1), . . . ,ρ(xn))
in Y n. Representation insensitivity for immediate pre-
diction then means that Pn+1

X (ρ f |x) should be equal to
Pn+1

Y ( f |ρx).

3.1 Definition and basic properties

For any gamble f on a finite and non-empty set of cate-
gories X , its range f (X ) := { f (x) : x ∈X } can again be
considered as a finite and non-empty set of categories, and f
itself can be considered as a relabeling map. With any m
in N n

X there corresponds a count vector m f in N n
f (X )

defined by
m f

r := ∑
f (x)=r

mx

for all r ∈ f (X ). Clearly, if x is a sample with count vec-
tor m, then the relabeled sample f x = ( f (x1), . . . , f (xn))
has count vector m f . Representation insensitivity is then
equivalent to the following requirement, which we take as
its definition, because of its simplicity and elegance.

Definition 6 (Representation insensitivity). A predic-
tive system σN is representation insensitive if for all
0 ≤ n ≤ N−1, for any finite and non-empty sets X and Y ,
for any m ∈N n

X and m′ ∈N n
Y , and for any gambles f

on X and g on Y such that f (X ) = g(Y ), the following
implication holds:

m f = m′g ⇒ Pn+1
X ( f |m) = Pn+1

Y (g|m′).

Clearly, a predictive system σN is representation insensi-
tive if and only if for all finite and non-empty sets X , all
0 ≤ n ≤ N−1, all m ∈N n

X and all f ∈L (X ):

Pn+1
X ( f |m) = Pn+1

f (X )(id f (X ) |m f ), (2)

where id f (X ) denotes the identity map (gamble) on f (X ).
The predictive lower prevision Pn+1

X ( f |m) then depends
on f (X ) and m f only, and not directly on X , f and m.
More explicitly, Pn+1

X ( f |m) only depends on the values
that f may assume, and on the number of times each value
has been observed.

We denote by ΣN
e,ri the set of all exchangeable predictive

systems that are representation insensitive. It is a subset of
the class ΣN

e of all exchangeable predictive systems, and



it inherits the order �. Clearly, taking (non-empty) infima
preserves representation insensitivity, so 〈ΣN

e,ri,�〉 is a com-
plete semi-lattice as well. We shall see in Theorem 5 that
these two structures have the same bottom (the vacuous
representation insensitive and exchangeable predictive sys-
tem).

The remainder of this paper is devoted to the predictive
systems in 〈ΣN

e,ri,�〉. So we are interested in finding, and
studying the properties of, predictive systems that are both
exchangeable (and therefore coherent) and representation
insensitive. We believe performing such a study to be quite
important, and we here report on our first attempts.

3.2 The lower probability function

With any predictive system σN , we can associate a map ϕσN

that is defined on the subset {(n,m) : 0 ≤ m ≤ n ≤ N−1}
of N2

0 by

ϕσN (n,m) := Pn+1
{0,1}(id{0,1} |n−m,m).

Why this map is important, becomes clear if we look at pre-
dictive systems that are representation insensitive. Consider
any proper event /0 6= A X , then it follows by applying
Equation (2) with f = IA, that

Pn+1
X (A|m) = Pn+1

{0,1}(id{0,1} |n−mA,mA)

= ϕσN (n,mA) (3)

where mA := ∑z∈A mz. So we see that in a representation
insensitive predictive system, the lower probability of ob-
serving an event (that is neither considered to be impossible
nor necessary) does not depend on the embedding set X
nor on the event itself, but only on the total number of pre-
vious observations n, and on the number of times m that the
event has been observed before, and is given by ϕσN (n,m).
Something similar holds of course for the upper probability
of observing a non-trivial event. Indeed, by conjugacy,

Pn+1
X (A|m) = 1−Pn+1

X (Ac|m) = 1−ϕσN (n,mAc)
= 1−ϕσN (n,n−mA). (4)

This property of representation insensitive predictive sys-
tems is reminiscent of Johnson’s sufficientness postulate
[9] (we use Zabell’s terminology [17]), which requires that
the probability that the next observation will be a category x
is a function fx(n,mx) that depends only on the category x
itself, on the number of times mx that this category has been
observed before, and on the total number of previous obser-
vations n. Representation insensitivity is stronger, because
it entails that the function ϕσN that ‘corresponds to’ the fx
is the same for all categories x in all possible finite sets and
non-empty X .

We call ϕσN the lower probability function of the predictive
system σN . We shall simply write ϕ instead of ϕσN , when-
ever it is clear from the context which predictive system

we are talking about. Let us give a number of interesting
properties for the lower probability function ϕ associated
to a representation insensitive and coherent predictive sys-
tem σN .

Proposition 3. Let N > 0 and let σN be a representation
insensitive and coherent predictive system with lower prob-
ability function ϕ . Then

1. ϕ is [0,1]-bounded:
0 ≤ ϕ(n,k)≤ 1 for all 0 ≤ k ≤ n ≤ N−1.

2. ϕ is super-additive in its second argument:
ϕ(n,k + `)≥ ϕ(n,k)+ϕ(n, `) for all non-negative
integers n, k and ` such that k + `≤ n ≤ N−1.

3. ϕ(n,0) = 0 for all 0 ≤ n ≤ N−1.

4. ϕ(n,k)≥ kϕ(n,1) for 1 ≤ k ≤ n ≤ N−1,
and 0 ≤ nϕ(n,1)≤ 1 for 1 ≤ n ≤ N−1.

5. ϕ is non-decreasing in its second argument:
ϕ(n,k +1)≥ ϕ(n,k) for 0 ≤ k < n ≤ N−1.

If σN is moreover regularly exchangeable, then

6. ϕ(n + 1,k) + ϕ(n,k)[ϕ(n + 1,k + 1)− ϕ(n + 1,k)] ≤
ϕ(n,k) for 0 ≤ k ≤ n ≤ N−2.

7. ϕ is non-increasing in its first argument:
ϕ(n+1,k)≤ ϕ(n,k) for 0 ≤ k ≤ n ≤ N−2.

8. ϕ(n,1)≥ ϕ(n+1,1)[1+ϕ(n,1)] for 1 ≤ n ≤ N−2.

9. Suppose that ϕ(n,1) > 0 and define sn := 1
ϕ(n,1) −n for

1 ≤ n ≤ N−1.4 Then sn ≥ 0, sn is non-decreasing and
ϕ(n,1) = 1/(sn +n).

In particular, these results, together with Equations (3)
and (4), allow us to draw interesting and intuitively ap-
pealing conclusions about predictive lower and upper prob-
abilities, which are valid in any representation insensitive
and coherent predictive system: (i) the lower probability of
observing an event that hasn’t been observed before is zero,
and the upper probability of observing an event that has
always been observed before is one [Proposition 3.3]; and
(ii) if the number of observations remains fixed, then both
the lower and the upper probability of observing an event
again do not decrease if the number of times the event has
already been observed increases [Proposition 3.5]. In pre-
dictive systems that are moreover regularly exchangeable,
we also see that (iii) if the number of times an event has
been observed remains the same as the number of obser-
vations increases, then the lower probability for observing
the event again does not increase [Proposition 3.7].

4This sn will later, in Section 5.2 turn out to be a constant (independent
of the number of observations n) under special additional assumptions,
and will play the rôle of the hyper-parameter s in the ID(M)M.



When the predictive system consists solely of families of
predictive linear previsions (apart from predictive lower
previsions for dealing with zero previous observations, see
Section 4), we can use the additivity of linear previsions,
instead of the mere super-additivity of coherent lower pre-
visions used previously, to get stronger versions of parts
of Proposition 35. Such predictive systems will be charac-
terised in Theorem 6 further on.

Corollary 4. Consider a representation insensitive and
coherent predictive system σN , with a lower probability
function ϕ , and such that all the predictive lower previsions
Pn+1

X (·|m) for 0 < n ≤ N−1 are linear previsions. Then
for all 0 < n ≤ N−1 and all k, `≥ 0 such that k + `≤ n:

1. ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `).

2. ϕ(n,k) = kϕ(n,1).

4 Are there representation insensitive
exchangeable predictive systems?

We don’t know yet if there are any predictive systems that
are both representation insensitive and exchangeable. We
remedy this situation here by establishing the existence
of two ‘extreme’ types of representation insensitive and
exchangeable predictive systems, one of which is also reg-
ularly exchangeable.

Consider, for any predictive system σN that is both repre-
sentation insensitive and exchangeable, the predictive lower
previsions for n = 0. These are actually unconditional lower
previsions P1

X on L (X ), modelling our beliefs about
the first observation X1, i.e., when no observations have
yet been made. It follows right away from Proposition 3
and Equations (3) and (4) that for any proper subset A
of X , P1

X (A) = ϕ(0,0) = 0. Since P1
X is assumed to

be a (separately) coherent lower prevision, it follows that
P1

X ( f ) = min f , for any gamble f on X . So all the P1
X in

a representation insensitive and exchangeable predictive
system must be so-called vacuous lower previsions.6 This
means that there is no choice for the first predictions. It also
means that it is impossible to achieve representation insen-
sitivity in any precise predictive system (but see Theorem 6
for a predictive system that comes close).

This leads us to consider the so-called vacuous predictive
system νN where all predictive previsions are vacuous:
for all 0 ≤ n ≤ N − 1, all finite and non-empty sets of

5Note that the equalities in this corollary will also hold for some non-
linear predictive systems, such as the mixing ones we shall consider in
Section 5

6This result was proven, in another way, by Walley [13, Section 5.5.1],
when he argued that his Embedding and Symmetry Principles under
coherence only leave room for the vacuous lower prevision. When there
are no prior observations (n = 0), the Embedding Principle is related to
representation invariance, and the Symmetry Principle with what we have
called category permutation invariance.

categories X , all m in N n
X and all gambles f on X ,

Pn+1
X ( f |m) := min f .

Theorem 5. The vacuous predictive system νN is reg-
ularly exchangeable and representation insensitive. It
is the bottom (smallest element) of the complete semi-
lattice 〈ΣN

e,ri,�〉. Its lower probability function is given
by ϕ(n,m) = 0 for 0 ≤ m ≤ n ≤ N−1.

In the vacuous predictive system the predictive lower previ-
sions Pn+1

X (·|m) are all vacuous, and therefore do not de-
pend on the number of observations n, nor on the observed
count vectors m. A subject who is using the vacuous predic-
tive system is not learning anything from the observations.
Representation insensitivity and (regular) exchangeability
do not guarantee that we become more committal as we
have more information at our disposal. Indeed, with the
vacuous predictive system, whatever our subject has ob-
served before, he always remains fully uncommittal. If we
want a predictive system where something is really being
learned from the data, it seems we need to make some ‘leap
of faith’, and add something to our assessments that is not
a mere consequence of exchangeability and representation
insensitivity.

So are there less trivial examples of exchangeable and rep-
resentation insensitive predictive systems? We must make
the vacuous choice for n = 0, but is there, for instance, a
way to make the predictive lower previsions precise, or
linear, for n > 0? The following theorem tells us there is
only one such exchangeable and representation insensitive
predictive system.
Theorem 6. Consider a predictive system where for any
0 < n≤N−1 all the predictive lower previsions Pn+1

X (·|m)
are actually linear previsions Pn+1

X (·|m). If this predictive
system is representation insensitive, then

Pn+1
X ( f |m) = Sn+1

X ( f |m) := ∑
z∈X

f (z)
mz

n
(5)

for all 0 < n ≤ N−1, all finite and non-empty sets of cat-
egories X , all m ∈ N n

X and all gambles f on X . For
its lower probability function ϕ , we then have ϕ(n,k) = k

n
for all 0 ≤ k ≤ n and n > 0. Moreover, the predictive pre-
visions given by Equation (5), together with the vacuous
lower previsions for n = 0, constitute a representation in-
sensitive and exchangeable (but not regularly so) predictive
system πN .

We call the predictive system πN described in Theorem 6
the Haldane predictive system. The name refers to the
fact that a Bayesian inference model with a multinomial
likelihood function using Haldane’s (improper) prior (see,
e.g., Jeffreys [8, p. 123]) leads to these predictive previsions
for n > 0.

It is a consequence of Walley’s Marginal Extension The-
orem [13, Section 6.7.3] that for any finite and non-
empty X , the only joint lower prevision on L (X N)



that is coherent with the Haldane predictive X -family is
given by PN

X ( f ) = minz∈X f (z, . . . ,z). This implies that
the Haldane predictive system is not regularly exchange-
able: any dominating precise exchangeable predictive sys-
tem satisfies pN−1

X (x) = 0 for all x ∈X N−1 such that
TX (x) = m 6= (N−1)ez for all z∈X , and for any such x,
the requirements for regular exchangeability cannot be sat-
isfied.

The Haldane predictive system only seems to be coherent
with a joint lower prevision PN

X which expresses that our
subject is certain that all variables Xk will assume the same
value, but where he is completely ignorant about what that
common value is. This is related to another observation: we
deduce from Proposition 3.3 that in the Haldane predictive
system, when n > 0 then not only the lower probability but
also the upper probability of observing an event that hasn’t
been observed before is zero! This models that a subject
is practically certain (because prepared to bet at all odds
on the fact) that any event that hasn’t been observed in the
past will not be observed in the future either. The sampling
prevision Sn+1

X ( f |m) for a gamble f in this predictive sys-
tem is the expectation of f with respect to the observed
(sampling) probability distribution on the set of categories.
The Haldane predictive system is too strongly tied to the
observations, and does not allow us to make ‘reasonable’
inferences in a general context.

5 Mixing predictive systems

So we have found two extreme representation insensitive
and exchangeable predictive systems, both of which are
not very useful: the first, because it doesn’t allow us to
learn from past observations, and the second, because its
inferences are too strong and we seem to infer too much
from the data. A natural question then is: can we find ‘in-
termediate’ representation insensitive and exchangeable
predictive systems whose behaviour is stronger than the
vacuous predictive system and weaker than the Haldane
predictive system? The first idea that comes to mind, is to
look at convex mixtures. Let us, therefore, consider a finite
sequence ε , of N numbers εn ∈ [0,1], 0 ≤ n ≤ N−1, and
study the mixing predictive system σN

ε whose predictive
lower previsions are given by

Pn+1
X ( f |m) := εnSn+1

X ( f |m)+(1− εn)min f , (6)

for all 0 ≤ n ≤ N−1, all finite and non-empty sets of cat-
egories X , all m ∈ N n

X and all gambles f on X . As
Sn+1

X ( f |m) is only defined for n > 0, and since represen-
tation insensitivity and coherence require that P1

X should
be vacuous, we always let ε0 = 0 implicitly. We call any
such sequence ε a mixing sequence, and we denote by ϕε

the lower probability function of the corresponding mixing
predictive system σN

ε .

We are mainly interested in finding mixing predictive sys-

tems that are representation insensitive and (regularly) ex-
changeable. The following proposition tells us that the only
real issue lies with exchangeability.

Proposition 7. For any mixing sequence ε , the predictive
system σN

ε is still representation insensitive. Moreover, let
0≤ k ≤ n≤ N−1. Then ϕε(n,k) = εn

k
n , and if εn > 0 then

sn = n 1−εn
εn

and εn = n
n+sn

. In particular ϕε(n,1) = εn/n is
the lower probability of observing a non-trivial event that
has been observed once before in n trials, εn = nϕε(n,1)
is the lower probability ϕε(n,n) of observing a non-trivial
event that has always been observed before (n out of n
times), and sn = 1−ϕε (n,n)

ϕε (n,1) is the ratio of the upper proba-
bility of observing an event that has never been observed
before to the lower probability of observing an event that
has been observed once before, in n trials.

We have already argued that in order to get away from
making vacuous inferences, and in order to be able to learn
from observations, we need to make some ‘leap of faith’
and go beyond merely requiring exchangeability and repre-
sentation insensitivity. One of the simplest ways to do so,
is to specify the numbers ϕ(n,1) for n = 1, . . . ,N−1, or in
other words, to specify, beforehand, the lower probability
of observing any non-trivial event that has been observed
only once in n trials. We can then ask for the most con-
servative representation insensitive predictive system that
exhibits these lower probabilities. The following theorem
tells us that mixing predictive systems play this part.

Theorem 8. Consider N > 0 and a mixing sequence ε .
Let σN be a representation insensitive coherent predictive
system such that its associated lower probability function ϕ

satisfies
ϕ(n,1)≥ ϕε(n,1) = εn/n

for all 0 < n ≤ N−1. Then σN
ε � σN .

Mixing predictive systems have a special part in this theory,
because they are quite simple, and in some sense most con-
servative. They are quite simple because all that is needed
to specify them is the values ϕ(n,1) of the lower proba-
bility function, or in other words, the lower probabilities
that an event will occur that has been observed once in n
observations. They are the most conservative coherent and
representation insensitive predictive systems with the given
values for ϕ(n,1). In the following subsections we shall see
that there are mixing predictive systems with a non-trivial
mixing sequence ε that are also regularly exchangeable, and
we derive a necessary condition on the mixing sequence ε

for this to be the case.

5.1 The regular exchangeability of
mixing predictive systems

Consider any mixing sequence ε and the corresponding
mixing predictive system σN

ε . For the corresponding lower
probability function ϕε it holds by Proposition 7 that



ϕε(n,k) = εn
k
n ; if we substitute this in the inequality of

Proposition 3.8 we see that it is necessary for regular ex-
changeability that

εn

n
≥ εn+1

n+1

(
1+

εn

n

)
, n = 1, . . . ,N−1. (7)

If one εn is zero, then all of the subsequent εn+k are zero
as well: if inferences are vacuous after n > 0 observations,
they should also remain vacuous after subsequent ones. Or,
to put it more boldly, in regularly exchangeable mixing
predictive systems, if we are going to learn at all from
observations, we have to start doing so from the first obser-
vation.

5.2 Predictive inferences for the IDMM

It is of particular interest to investigate for which types of
mixing predictive systems, or in other words, for which
mixing sequences ε , we generally have an equality rather
than only an inequality in the condition of Proposition 2,
i.e., for which

Pn+1
X ( f |m) = Pn+1

X (Pn+2
X ( f |m+e·)|m), (8)

for all finite and non-empty X , all 0 ≤ n ≤ N − 1,
all m ∈N n

X and all gambles f on X , where the pre-
dictive lower previsions Pn+1

X (·|m) are given by Equa-
tion (6). Using the definition of Sn+1

X ( f |m), and the co-
herence of Pn+1

X (·|m) we find, after some rearranging, that
Equation (8) holds if and only if

εn

n
=

εn+1

n+1

(
1+

εn

n

)
, n = 1 . . . ,N−1,

i.e., we have the equality in (7). Clearly, one εn is zero if and
only if all of them are, which leads to the vacuous predictive
system νN . We already know this vacuous system to be
regularly exchangeable (and representation insensitive). If
we assume on the other hand that εn > 0 for n = 1, . . . ,N,
and let ζn := n/εn = n+ sn ≥ 1, then the above equality
can be rewritten as ζn+1 = ζn +1, which implies that there
is some s ≥ 0 such that ζn = n+ s, or equivalently, sn = s
and consequently, εn = n

n+s , and

Pn+1
X ( f |m) =

n
n+ s

Sn+1
X ( f |m)+

s
n+ s

min f (9)

for n = 0,1, . . . ,N−1. The predictive lower previsions in
Equation (9) are precisely the ones that can be associated
with the so-called Imprecise Dirichlet-Multinomial Model
(or IDMM) with hyper-parameter s [15, Section 4.1]. We
call mixing predictive systems of this type IDMM-predictive
systems. The vacuous predictive system corresponds to
letting s → ∞.

Theorem 9. The vacuous predictive system, and the IDMM-
predictive systems for s > 0 are regularly exchangeable
and representation insensitive, and they are the only mixing
predictive systems for which the equality (8) holds.

Among the mixing predictive systems, the ones correspond-
ing to the IDMM are also special in another way. which
points to a quite peculiar, but intuitively appealing, prop-
erty of predictive inferences produced by the IDMM. In-
deed, assume that in addition to observing a count vec-
tor m of n observations, we know in some way that the
(n + 1)-th observation will belong to a proper subset A
of X —we might suppose for instance that the observa-
tion Xn+1 has been made, but that it is imperfect, and only
allows us to conclude that Xn+1 ∈ A. Then we can ask
what the updated beliefs are, i.e., what Pn+1

X ( f |m,A) is.
Since Pn+1

X (A|m) = εnmA/n > 0 if and only if mA > 0
and εn > 0, let us assume that indeed mA > 0 and εn > 0,
in which case the requirements of coherence allow us to
determine Pn+1

X ( f |m,A) uniquely, using the so-called Gen-
eralised Bayes Rule [13, Section 6.4]. This implies that
Pn+1

X ( f |m,A) is then the unique real µ such that

Pn+1
X (IA( f −µ)|m) = 0.

We now have the following characterisation of IDMM-
predictive systems.

Theorem 10 (Specificity). The IDMM-predictive systems
with s > 0 are the only mixing predictive systems with all
εn > 0, n = 1, . . . ,N−1 that satisfy

Pn+1
X ( f |m,A) = PmA+1

A ( fA|mA) (10)

for all n = 1, . . . ,N−1, all m ∈N n
X , all gambles f on X

and all proper subsets A of X such that mA > 0.

We have denoted by fA the restriction of the gamble f to
the set A, by mA the A-tuple obtained from m by dropping
the components that correspond to elements outside A. The
sum of the components of mA is mA.

This so-called specificity property of inferences charac-
terised by Equation (10) is quite peculiar. Suppose that you
have observed n successive outcomes, leading to a count
vector m. If you know in addition that Xn+1 ∈ A, then Equa-
tion (10) tells you that the updated value Pn+1

X ( f |m,A) is
the same as the one you would get by discarding all the
previous observations producing values outside A, and in
effect only retaining the mA observations that were inside A!
Knowing that the (n+1)-th observation belongs to A allows
you to ignore all the previous observations that happened to
lie outside A. This is intuitively appealing, because it means
that if you know that the outcome of the next observation
belongs to A, only the related behaviour (the values of f
on A and the previous observations of this set) matters for
your prediction.

The name ‘specificity’ for this property was suggested to
us by Jean-Marc Bernard. In one of his papers [1], he
calls ‘specific’ any type of inference that has this particular
property.



6 Conclusions

More work is needed in order to be able to draw a reason-
ably complete picture of the issue of representation insensi-
tivity in predictive systems. Indeed, while doing research
for this paper, we came across a multitude of questions that
we haven’t yet been able to answer, and we list only a few
of them here.

(i) Are there (regularly) exchangeable and representa-
tion insensitive predictive systems that are not mixing
predictive systems?

(ii) Related questions are: are there (regularly) exchange-
able and representation insensitive predictive systems
that, unlike the mixing systems, are not completely
determined by the probabilities ϕ(n,1) of observing
an event that has been observed only once before
in n observations; are there such predictive systems
whose behaviour on gambles, unlike that of mixing
systems, is not completely determined by the lower
probability function ϕ; and are there such predictive
systems whose lower probability function ϕ , unlike
that of mixing systems, is not additive in the sense
that ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `)?

(iii) Are there (regularly) exchangeable and representation
insensitive mixing predictive systems that are not of
the IDMM-type? And if so,

(iv) are there (regularly) exchangeable, representation in-
sensitive non-mixing predictive systems that satisfy
Equation (10)?

(v) Can we arrive at stronger conclusions if we consider
that the observations Xn make up an infinite exchange-
able sequence?

(vi) Can more definite answers be given if we consider
the general, rather than the immediate, prediction
problem?
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