
Consider a Markov chain with the state space {a,b} and the probability 
mass functions m1(initial) and qk(.|a), qk(.|b). 
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we are here

The probability distribution after the k-th time step is given by

mT
k+1 = mT

k · Tk = mT
k ·

[
qk(a|a) qk(b|a)
qk(a|b) qk(b|b)

]
and m1 =

[
m1(a)
m1(b)

]
.

Expectation in the Markov tree

Consider a real-valued function f on {a,b}n. Its expectation P(f) in differ-
ent parts of the tree is given by the equation

Pk(f) = pT
k · f = pT

0 · Tk · f = P0(Tkf) where
P0(f) = f(a)m0(a) + f(b)m0(b).
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Every probability mass function can be seen as a point of some unit 
simplex

ΣY =
{
p ∈ RY :

∑

y∈Y
p(y) = 1 and (∀y ∈ Y)(p(y) ≥ 0)

}
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For imprecise Markov chains, the assumption is that we only know 
that the mass functions belong to a credal set: a closed convex sub-
set of the unit simplex.

Expectations in imprecise Markov chains

The linear expectation operator is replaced by a sublinear lower ex-
pectation and a superlinear upper expectation operator. They are the 
minimum and maximum of the expectation over all the probability 
mass functions of the credal set.

P (f) = min
{
pT f : p ∈ M

}
and P (f) = max

{
pT f : p ∈ M

}
.

Using the credal sets assigned to each node of the tree, these func-
tionals can be used to define the lower and upper transition operators.

T kf(y) = min
{
qT f : q ∈ Mk(·|y)

}
and

T kf(y) = max
{
qT f : q ∈ Mk(·|y)

}
.

Similarly, the lower and upper previsions in the initial situation are cal-
culated 

P 0f(y) = min
{
mT f : m ∈ M0

}
and

P 0f(y) = max
{
mT f : m ∈ M0

}
.

Calculating the joint distribution

Because of the nonlinear character of the upper and lower expecation 
functionals, the joint distribution can not be calculated directly from 
the imprecise joint mass functions. Luckily, the approach using transi-
tion operators can be generalized to the imprecise case:

P k(f) = P 0(T
kf) and P k(f) = P 0(T

k
f)

The backpropagation of f (i.e. f → Tnf → Tn−1Tnf → . . .) is linear in 
the number of transition steps. The complexity of each transition step 
depends on the nature of the credal sets.

2. Imprecise Markov trees

If we define Pn(y|x) := P 0

(
Tny(x)

)
, i.e. the upper expectation that 

the system is evolving from state x into state y in n steps then the fol-
lowing inequality can be proved. 

For any state x and y of an imprecise Markov tree, and for any 
natural number n and m, 

Pn+m
xy ≥ Pn

xzP
m

zy .

Using this property, we can define the accessibility relation x → y (y 
is accessible from x). This relation defines a communication relation 
which is an equivalence relation and divides the possibility space in 
communication classes x↔y. Moreover, within each communication 
class, states can be subdivided in cyclic classes.
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Acyclic maximal classes are called ergodic. If a transition operator has 
only one class which is ergodic, then we call this transition operator 
regular.

3. State classification

Consider a three-state stationary imprecise Markov model with 
X = {a, b, c} and with marginal and transition probabilities given by 
probability intervals. 

The upper transition operator T  is fully determined by the upper and 
lower Markov matrices:

T :=
[
T{a} T{b} T{c}

]
=




q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)





=
1

200




9 9 162

144 18 18
9 162 9



 ,

T :=
[
T{a} T{b} T{c}

]
=




q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)





=
1

200




19 19 172
154 28 28
19 172 19



 .

Similarly, the initial upper expectation P 0 is completely determined by 
the matrices:

P 0

[
m0(a) m0(b) m0(c)

]
and P 0

[
m0(a) m0(b) m0(c)

]
.

6. Quasi cyclic example

n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

n = 9 n = 10 n = 22 n = 1000

We can prove a Perron-Frobenius theorem for the nonlinear (transition) 
operator T :

For the limit distribution we find that

lim
n→∞

Pn(f) = T
∞

f = cf .

So its value is independent of the initial distribution P 0, as in the clas-
sical case.
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4. Convergence theorem

Suppose we consider a precise stationary Markov chain, with precise 
transition operator which we contaminate with a vacuous model, i.e., 
we take a convex mixture with the upper transition operator T  = max. 
This leads to the upper transition operator

Tf = (1 − ε)Th + ε max f with ε ∈ [0, 1].

Consider for example the starionary imprecise Markov chain with 
X = {a, b} and the initial credal set defined by

 M0 = {m ∈ Σ{a,b} : 0.6 ≤ m(a) ≤ 0.9}.

Let moreover ε = 0.1 and the precise transition matrix T = [
0.15 0.85
0.85 0.15 ].

5. Contamination model
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If the transition operator T  is regular, then the sequence 
T

n
, n ∈ N converges pointwise to some operator T

∞
 and for 

any real-valued function f, T
∞

 f is some constant. 

Convergence Theorem


