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Robust uncertainty models: Main points

I Possibility to express a lack of or limited relevant knowledge

I Interval inferences instead of point inferences

I Set of maximal options instead of single optimal option

I Computational complexity increases with increasing expressivity
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Elections in the United Crates of Vegetablia

Office Main Dish

Candidates I The Onion

I The Cabbage

Pollster (we) Red Tomato



4/26

Elections in the United Crates of Vegetablia
Red Tomato’s reputation is at stake!

made a bad prediction for the previous election,

claiming The Pumpkin was highly favored to win.

This time, we want to avoid such embarrassment:
I Use models that can express uncertainty and lack of knowledge
I Use models that can generate cautious predictions

Basic setup:
I Random variable X
I Set of possible outcomes: clear win for a candidate or a recount{

, ,

}
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Uncertainty Modeling Theories
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Probability Theory
Each possible outcome is assigned a probability value.

1. Positive: e.g., P({ }) = p ≥ 0

2. Additive: e.g., P({ , }) = P({ })+P({ })

3. Normed: P({ , , }) = 1

Inferences

I probability values

I expectations [summation/integration]

E (f ) = p f ( )+p f ( )+p f ( )

I outcomes with maximal probability

I options minimizing/maximizing expectation
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Probability Theory: Illustration
Showing probability mass functions on the probability simplex

p = p = p = 1
3
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Probability Theory: Quiz

Where should we put if p = 1
6 and p = 2

6?

A B

C D

E F
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Uncertainty Modeling Theories
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Belief Function Theory
(aka Dempster–Shafer Theory, Theory of Completely Monotone Capacities)

Idea & implementation
You do not have to divide all probability mass over outcomes.
Specify a probability mass function m over the 2{ , , } \∅.
Inferences

I lower probability values (belief) P(A) = ∑B⊆A mB

I lower expectations [Choquet integration]

E (f ) = ∑A⊆{ , , }mA minx∈A f (x)

= min f +
∫max f

min f P({x : f (x)≥ v})dv

I outcomes with maximal lower/upper probability

I options minimizing/maximizing lower/upper expectation,
maximal options in expectation interval order,. . .
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Belief Function Theory: Illustration
Convex combinations of vacuous and degenerate belief models

m{ , , } = m{ , } = m{ } = 1
3

P({ }) = 1
3

P({ }) = 2
3

P({ }) = 2
3
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Belief Function Theory: Quiz

What does the belief function with basic mass assignment
m{ , } = m{ , } = m{ , } = 1

3 look like in the simplex?

A B

C
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Uncertainty Modeling Theories

. . .

Interval Probability

Belief Functions

. . .Probability
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Interval Probability Theory
Idea: direct probability assessment
Directly specify lower or upper probabilities for some events.
(Not necessarily bounds on some ‘true’ probability distribution.)
Constraints
Credal set (bounded probability mass functions) may not be empty.
Important property
I Super/Sub-Additivity:

P({ })+P({ })≤ P({ , })

≤ P({ , })≤ P({ })+P({ })

Intermezzo: Conjugacy relations

P(A) = 1−P(Ac) E (f ) =−E (−f )
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Credal set (bounded probability mass functions) may not be empty.
Important property
I Super/Sub-Additivity:
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≤ P({ , })≤ P({ })+P({ })

Inferences
Lower and upper probabilities and expectations are more complex to
derive (discussed later).
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Interval Probability Theory: Illustration
Constraints and conjugacy

P({ }) = 1

P({ }) = 1
3

P({ }) = 2
3

P({ , }) = 1
3
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Interval Probability Theory: Quiz

What does the credal set for the assessment
P({ , }) = P({ , }) = P({ , }) = 1

2 look like?

A B

C
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Uncertainty Modeling Theories

Interval Expectation

Interval Probability

Belief Functions

. . .Probability
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Interval Expectation Theory
(aka Imprecise Probability Theory, Theory of Coherent Lower Previsions)

Idea: direct expectation assessment
Directly specify lower expectations for some functions g ∈ G .
Constraints

I Avoiding sure loss: Credal set C may not be empty
I Coherence: Specified expectations must be consistent,

i.e., for all f ∈ G and λg ≥ 0

∑g∈G λgE (g)−E (f )≤max
(
∑g∈G λgg − f

)
Inferences
I Natural extension:

E (f ) = max
{

α ∈ R : f −α ≥ ∑g∈G λg
(
g −E (g)

)
,λg ≥ 0

}
I Lower envelope: E (f ) = minp∈C Ep(f )
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Interval Expectation Theory: Illustration
Constraints, vertices, and envelopes

E (I − I ) = 1
3

Ep(I − I )≥ 1
3

p −p ≥ 1
3

E (I − I ) =−1
3

E (I − I ) = 2
3

P({ }) = 1

P({ }) = 1
3

P({ }) = 2
3
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Interval Expectation Theory: Quiz

What does the credal set for the assessment
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Uncertainty Modeling Theories

Interval Expectation

Interval Probability

Belief Functions

PossibilityProbability
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Possibility Theory
(related to Fuzzy Set Theory)

Subclass of belief functions with m defined on nested sets.
The corresponding upper probability (called possibility)
has a convenient property:

P(A∪B) = max{P(A),P(B)} or P(A) = max
x∈A

P({x}) = max
x∈A

πx .

Inferences
Same as for belief function theory
(ignoring questions of interpretation)
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Possibility Theory: Illustration
Nested sets and possibility distributions

m{ , , } = m{ , } = m{ } = 1
3
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Possibility Theory: Quiz

What does the possibility measure with possibility distribution
π = 1, π = 1, and π = 1

3 look like in the simplex?

A B

C
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Uncertainty Modeling Theories

Interval Expectation

Interval Probability

Belief Functions

PossibilityProbability
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More Uncertainty Modeling Theories
Choice functions

Sets of desirable gambles

Interval Expectation

Lexicographic Probability Interval Probability

2-Monotone Capacities

Belief Functions

Possibilityε-Contamination

Probability
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