
Flexible and efficient site constraint handling
for wind farm layout optimization

Erik Quaeghebeur

Wind Energy Group — Delft University of Technology

WESC 2019
20 June 2019



[4C Offshore: https://www.4coffshore.com/]

https://www.4coffshore.com/


[Netherlands Enterprise Agency (RVO.nl) Borssele Wind Farm Zone: Project and Site Description Wind Farm Sites III and IV (2016-08)]

https://offshorewind.rvo.nl/file/download/44692942


[Netherlands Enterprise Agency (RVO.nl) Borssele Wind Farm Zone: Project and Site Description Wind Farm Sites III and IV (2016-08)]

https://offshorewind.rvo.nl/file/download/44692942


[Netherlands Enterprise Agency (RVO.nl) Borssele Wind Farm Zone: Project and Site Description Wind Farm Sites III and IV (2016-08)]

https://offshorewind.rvo.nl/file/download/44692942


So what do real (offshore) sites look like?

A plate of irregularly-cut pieces of Emmental cheese. . .

• multiple non-connected parts
• non-convex, with concavities of various sizes
• circular exclusion zones strewn around.



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!



Linear constraints as the basis

signed distance

0

+

−

Convex polygons are sets of linear constraints



Linear constraints as the basis

signed distance

0

+

−

Convex polygons are sets of linear constraints



Linear constraints as the basis

signed distance

0

+

−

Convex polygons are sets of linear constraints



Linear constraints as the basis

signed distance

0

+

−

Convex polygons are sets of linear constraints



Linear constraints as the basis

signed distance

0

+

−

Convex polygons are sets of linear constraints



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity



Site decomposition in terms of convex polygons and discs



Deduced from the vertex lists for the parcel boundaries



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.



Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.





(My current implementation differs from the algorithm sketched.)





Conclusions

• Site constraint handling deserves more attention.

• Efficient approaches are possible.



To do

• Decent overview of constraint handling approaches. (Your input is appreciated!)

• Efficiency relative to other approaches.

• Actual characterization of computational complexity.

• Better implementation of correction algorithm.

• Restriction to ‘simple’ decompositions?



Thanks! Questions?
site

parcels a+b

concavity

cable corridor

shipwreck

parcel c

concavity


	Opening
	Main
	Closing

