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So what do real (offshore) sites look like?

A plate of irregularly-cut pieces of Emmental cheese. . .

• multiple non-connected parts
• non-convex, with concavities of various sizes
• circular exclusion zones strewn around.



How can we handle constraints for complex sites?

1 Discretize the possible turbine positions
(computationally efficient, but limits optimization approaches)

2 Divide the site into quadrilaterals and transform those to rectangles
(straightforward, but working in transformed space may be inconvenient)

3 Describe the site as a set of polygonal curves and use a ray shooting algorithm
(flexible, but limited for correcting violations)

4 Various approaches I’m not aware of, but which you’ll tell me about later

5 Decomposition into nested convex polygons and calculating closest border point
(both flexible and efficient?)

Circular constraints need to be added separately to 2, 3, 5!
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Linear constraints as the basis
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Site decomposition in terms of convex polygons and discs

• Sites are described as a tree of convex polygons and discs.
• Levels alternate between included and excluded.
• Needs to be done just once, starting from the parcels’ vertex lists.

Example for Borssele IV:
site

parcels a+b

concavity
cable corridor

shipwreck

parcel c

concavity
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Site decomposition in terms of convex polygons and discs



Deduced from the vertex lists for the parcel boundaries



Checking site constraints efficiently
• Walk the tree from root to leaves.
• Only check the turbines inside the parent.

Example for Borssele IV:
site

parcels a+b
all turbines, 6 constraints

concavity
a+b t’s, 2 c’s

cable corridor
a+b t’s, 2 c’s

shipwreck
a+b t’s, 1 c

parcel c
all t’s, 3 c’s

concavity
c t’s, 2 c’s
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Correcting constraint violations: move to the closest border point
1 Assume constraint check done;

only consider turbines violating site constraints.
2 Determine closest point on all violated constraints (the candidates).
3 Remove candidates that fall outside of the site.
4 For parcels without a candidate,

take the closest parcel vertex as the candidate.
5 Take the closest candidate

as the correction.
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(My current implementation differs from the algorithm sketched.)





Conclusions

• Site constraint handling deserves more attention.

• Efficient approaches are possible.



To do

• Decent overview of constraint handling approaches. (Your input is appreciated!)

• Efficiency relative to other approaches.

• Actual characterization of computational complexity.

• Better implementation of correction algorithm.

• Restriction to ‘simple’ decompositions?



Thanks! Questions?
site

parcels a+b

concavity

cable corridor

shipwreck

parcel c

concavity
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