Robust wind farm layout optimization using pseudo-gradients
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1 Wind energy systems 2 Wind resources
A wind energy system transforms wind into electrical power. A wind resource is the wind available at a wind farm site.
1.1 Wind turbines 2.1 Wind direction & speed distributions

Wind turbines (picture left) are the elementary wind energy sys-
tems. Important characteristics are its rated power, rotor diame-
ter, and hub height.
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direction wind speed conditionals (plot right), for
which Weibull distributions are often used.

1.2 Wind farms

~ e - Wind farms are collections of
wind turbines constrained to
a specific site (picture left).
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2.2 Annual energy production of a wind farm
An essential quantity in the design of a wind farm is its annual

energy production (AEP): the electrical energy produced by
a farm for a given wind resource.

The placement of turbines within a farm
Is its layout (drawing right).

The layout influences the farm cost via the
cabling and substructure cost, due to cable
layout and depth & soil variations.
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Also of interest is the power rose, the distribution over wind
directions of relative wakeless power production (plot right).

1.3 Wake losses
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Wakes are regions of complexly perturbed wind behind turbine

2.3 Inter-year wind resource variation
rotors (picture right). :
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3 Wind farm layout optimization
3.1 Objectives

« AEP: Maximize for expected power production only

4 Inter-year variation robustness

A wind farm’s layout is usually optimized for one wind resource, the estimated average one (used in our §tudy). D N
over the farm lifetime. However, inter-year production stability is important for the finan- * LCoE: M'”'m'ze levelized cost of energy, | o
cial attractiveness of a farm design. Making a farm robust against inter-year wind re- the ratio between farm cost and power production (more realistic).

source variation is therefore of practical interest.

3.2 Constraints

4.1 Goals 4.2 Setup Turbines in a farm must satisfy a distance constraint (drawing right,
red circles) and site constraints (drawing right, red & blue lines).
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robustness and optimality. - by following your suggestion. medium-quality layouts (drawing above right, turbine trajectories).
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