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Object of study: offshore wind farms

Location determines
• wind resource,
• environmental conditions,
• bathymetry and soil composition

Site determined by constraints

Regulations such as turbine distance constraint

Turbine type determines how wind is transformed into power

Layout • number and placement of turbines within the site
• cable topology



Wind farm layout

https://www.4coffshore.com/offshorewind/
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Wind farm layout: regular



Wind farm layout: random



Wind farm layout: irregular



Wind farm layout

Fixed number of turbines n

Ignored cable topology, bathymetry, and soil composition

Design variables turbines’ coordinates ` =
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The optimization objective

Options:
AEP Maximize “Annual Energy Production”

• Actually, the expected energy produced in a year
• Equivalently, the expectation of the power output

(in a given year)

LCoE Minimize “(Levelized) Cost of Energy”
• Ratio of lifetime costs and lifetime energy production
• Useful when considering cabling and substructure installation

(not done here)
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What affects power output? Turbine type(s)
Via their

• power curve, which maps wind speed to power
• thrust curve, which maps wind speed to the thrust coefficient;

the amount of thrust affects the downstream wind field

v0 vcut-in vcut-out

p

rated power

ct

‘maximum’ thrust



What affects power output? Number of turbines

Scales power output roughly linearly
• determines a farm’s name-plate capacity
• may vary because of non-availability of some turbines

(ignored here)



What affects power output? Wind resource
Joint probability distribution for wind speed and wind direction

• Usually given as
• marginal wind direction distribution (‘wind rose’)
• conditional wind speed distributions (usually Weibull-like)

• Estimated from measurements at the location or nearby
• Depends on the time period considered
• Main determinant of capacity factor

Speed marginal distribution determines
power output expectation upper bound

Direction Determines the prevalence of wakes,
which lower power output



Wind resource: joint distribution (KNW 53.01°N 3.01°E)
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Wind resource: wind rose
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Wind resource: speed distribution

v0 vcut-in vcut-out

225°
315°



Wind resource: power rose
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Wakes

Photo by Christian Steiness / Vattenfall (Horns Rev Offshore Wind Farm, Denmark); http://i.imgur.com/qruVcnu.jpg

http://i.imgur.com/qruVcnu.jpg


Wakes: CFD

Richard Stevens/UTwente http://stilton.tnw.utwente.nl/people/stevensr/research_windles.html

http://stilton.tnw.utwente.nl/people/stevensr/research_windles.html


Wakes: Engineering models

“Estimation of Offshore Wind Energy Production Using Meteorological Data” (2016 student project)
Harms, Heilig, Knyszewski, Van de Krol, Martens, Nachtergaele, Seres, Vakaet, and Wennink.



Wakes: Engineering models (Jensen & Bastankhah–Porté-Agel)

M. Bastankhah, F. Porté-Agel / Renewable Energy 70 (2014) 116–123



Wakes: Engineering models

Jensen The simplest, most popular wake model:

speed deficit in wake = 1− v
v∞
=

induction factor
wake radius =

1−
⌈︂

1−ct(v)
(1+kd)2

• d : the downstream distance in rotor radii
• k: the wake expansion factor (sometimes function of ct)

Wake variation over rotor area geometrical integration or quadrature

Wake combination root-sum-square of deficits
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Return to the optimization objective
The objective:

maximize the expectation of the power output

or equivalently

minimize the relative expectation of the wake power loss

Steps:
1 Transform turbine coordinates to downwind/crosswind form for each direction
2 Calculate wake deficits from individual turbines for each wind speed
3 Combine wake deficits
4 Obtain waked speeds at turbines
5 Apply power curve to waked speeds
6 Take expectation over wind speeds and wind directions
7 Average power output over all turbines
8 Convert to loss form
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Optimization approaches in the literature

Random search Genetic algorithms, particle swarm optimization, etc.
• Not much domain knowledge is used
• Computationally demanding

Gradient descent Using analytical or numerical gradients
• Domain knowledge used (gradients)
• Very computationally demanding

Mathematical programming Using linear or quadratic model approximations

Exhaustive search Using a discretized site and iterative addition of turbines

N.B.: Constraint handling is a non-negligible step in the optimization, but
underdiscussed in the literature.
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Yet another optimization approach

Why? Existing methods are too slow to run the multiple cases needed for
uncertainty quantification and robust optimization

How? Combine domain knowledge (per-turbine deficits)
with heuristics (emulate gradient-descent)

Does it work? Yes, at least an order magnitude faster and
resulting in relatively good-quality layouts

Downsides? Tendency to get stuck in a particular class of local minima



Pseudo-gradients
Basic idea “Push-down”

• Multiply the unit vector between an upstream and a downstream
turbine by the deficit caused by the upstream one at the
downstream one

• Sum over all upstream turbines
• Take the expectation over the wind resource
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Pseudo-gradients
Variant “Push-back”

• Multiply the unit vector between a downstream and an upstream
turbine by the deficit caused by the upstream one at the
downstream one

• Sum over all downstream turbines
• Take the expectation over the wind resource
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Optimization using pseudo-gradients

Building blocks
• The push-back, push-down, and push-cross steps
• Adaptive step size
• Constraint correction procedures:

• Move to border if moved outside
• Pull apart if too close together

• Stopping criterion: step becomes too small

‘Pure-down’ approach • Push-down steps only
• Increase step size if objective improves, decrease otherwise

‘Multi-adaptive’ approach • Try all three step types concurrently
• Try larger and smaller step sizes concurrently
• Continue with best of the six generated layouts
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Optimization using pseudo-gradients: Pure-down
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Optimization using pseudo-gradients: Pure-down



Optimization using pseudo-gradients: Multi-adaptive
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Optimization using pseudo-gradients: Multi-adaptive



Sources of uncertainty

Wind resource
• Inter-year variation
• Estimation approach to distributions
• Bin size of discretization

Wake model uncertainty
• Which wake model (Jensen, Bastankhah–Porté-Agel,. . . )?
• Wake model parameters
• Wake at hub or integrated over rotor plane?



Inter-year variation in the North Sea

KNW dataset • KNMI hindcast dataset

• 35 years of hourly data for locations in and around the
Netherlands

• Picked point in the middle of the North Sea, at 53.01°N 3.01°E

• Used wind direction and wins speed ‘measurements’ at 100 m

• Created wind resource for
• the whole period,
• each year, and
• lower and upper envelopes of those



Inter-year variation in the North Sea: wind rose variation
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Inter-year variation in the North Sea: power rose variation
0°

45°

90°

135°

180°

225°

270°

315°

0.025
0.050

0.075
0.100

0.125
0.150

0.175
0.200



Inter-year variation in the North Sea: power rose variation
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Robust optimization investigation

Setup 1 Optimize the layout against all wind roses created
2 Evaluate the optimized layouts against all other wind roses

(except lower and upper envelopes)
3 Get a view on variation
4 Determine if average, lower, or upper windrose provides more

robust layout

Results • absolute wake loss expectation varies very little over layouts
• the upper windrose seems to provide a more robust solution
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Conclusions & Plans

Conclusions • It is possible to create faster wind farm layout optimization
approaches than the ones used

• Inter-year wind rose variation is non-negligible per se
• The necessity of robust optimization has however not been

demonstrated

Plans • Add layouts to comparison:
• one optimized against the uniform wind rose
• others optimized using different approaches
• non-optimized ones

• Quantify effect of wake model uncertainty
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