OWFgraph

a graph database for the off-shore wind farm domain

Erik Quaeghebeur joint work with Sebastian Sanchez & Michiel Zaaijer

TU Delft Wind Energy Presentation

8 November 2016

2.1 Wake description

The wake behind a turbine is assumed to have a start disacter equal to the turbine disacter, and to spread linearly as a function of download value of the start of the start

Inside the wake the velocity is considered constant, instead of using the commonly seen Gaussian discribution. This simplification is made because the sin of the model is to give an estimate of the energy content in the wind field seen by the downind turbines, rather than to describe the velocity field accurately.

Fig. 2. Schematic view of wake description

With symbols defined in Fig. 2, a balance of momentum gives:

$$D^2 U_r + (Dw^2 - D^2)U = D_w^2 V$$

The wake velocity is found by the expression

$$V/U = 1 - 2q(1 + 2kX/D)^2$$

a is defined as the initial velocity deficit $1-U_T/U$ but can also be expressed as

$$a = (1 - \sqrt{1 - C_{t}})/2$$

where Ct is the thrust coefficient of the turbine. Hence, the velocity deficit of the wake at a given position X is:

$$1 - V/U = (1 - \sqrt{1 - C_{t}})/(1 + 2kX/D)^{2}$$
.

The problem of interacting wakes is solved by assuming the kinetic energy deficit of a mixed wake to be equal to the sum of the energy deficits for each wake at the calculated downwind position.

Goal Why do we want to build a graph database for the offshore wind farm domain?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Structure How do we structure the content in the database?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Structure How do we structure the content in the database?

Implementation What graph database program do we use?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Structure How do we structure the content in the database?

Implementation What graph database program do we use?

Installation What is our setup?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Structure How do we structure the content in the database?

Implementation What graph database program do we use?

Installation What is our setup?

Querying How do we add and extract data?

Goal Why do we want to build a graph database for the offshore wind farm domain?

Content What do we put into the database?

Structure How do we structure the content in the database?

Implementation What graph database program do we use?

Installation What is our setup?

Querying How do we add and extract data?

Lessons learned What is different from what we expected?

Project 3 Wind Farm Design Optimization Work Package 3.2 Uncertainty Model of Wind Farms

Project 3 Wind Farm Design Optimization Work Package 3.2 Uncertainty Model of Wind Farms

Challenge Develop a model for the accumulation of uncertainty from multiple sources in performance and cost of an entire OWF.

Project 3 Wind Farm Design Optimization Work Package 3.2 Uncertainty Model of Wind Farms

Challenge Develop a model for the accumulation of uncertainty from multiple sources in performance and cost of an entire OWF.

Activities

- make inventory of sources of uncertainty;
- create causal map of uncertainty propagation;
- assessment of uncertainty contributions to OWF CoE;
- select uncertainty propagation approach.

Project 3 Wind Farm Design Optimization Work Package 3.2 Uncertainty Model of Wind Farms

Challenge Develop a model for the accumulation of uncertainty from multiple sources in performance and cost of an entire OWF.

Activities

- make inventory of sources of uncertainty;
- create causal map of uncertainty propagation;
- assessment of uncertainty contributions to OWF CoE;
- select uncertainty propagation approach.

Project 3 Wind Farm Design Optimization Work Package 3.2 Uncertainty Model of Wind Farms

Challenge Develop a model for the accumulation of uncertainty from multiple sources in performance and cost of an entire OWF.

Activities

- make inventory of sources of uncertainty;
- create causal map of uncertainty propagation;
- assessment of uncertainty contributions to OWF CoE;
- select uncertainty propagation approach.

 \Rightarrow Conclusion Create a structured description of the domain

Content – concept types

The physical world Objects, Procedures, Attributes, and Phenomena

\$ match (a:Attribute) return a, rand() as r order by r limit 3

Content – concept types

The physical world Objects, Procedures, Attributes, and Phenomena

\$ match (o:Object) return o, rand() as r order by r limit 3 § match (o:Procedure) return o, rand() as r order by r limit 3 Object(3) Procedure(3) RNA active yaw syst OWF support turbine rotor bearing § match (a:Attribute) return a, rand() as r order by r limit 3 S match (p:Phenomenon) return p Attribute(3) (no rows) OWES state nonco

The mathematical world Variables and Models

Structure – Graph representation

Graph representation as structured domain knowledge representation:

- concepts as nodes;
- *interrelations* as edges.

Structure - Graph representation

Graph representation as structured domain knowledge representation:

- concepts as nodes;
- interrelations as edges.

Structure – Graph representation

Graph representation as structured domain knowledge representation:

- concepts as nodes;
- interrelations as edges.

We need a 'foundational ontology' for our knowledge graph:

- classification of the domain's concepts and relationships,
- small enough to be manageable,
- Iarge enough to be sufficiently expressive.

Structure – The foundational ontology

(Drawing courtesy of Sebastian Sanchez.)

Content – Types, Labels, and Properties

Content is added to the graph by

giving edges a type,

t	с
APPEARS_IN	1328
DESCRIBES	542
PART_OF	408
INPUT_TO	168
VARIANT_OF	150
OUTPUT_OF	76
INSTRUCTS	8
MODIFIES	4

Content – Types, Labels, and Properties

Content is added to the graph by

- giving edges a type,
- giving nodes zero or more labels, and

 $\$ match ()-[r]-() with type(r)... \nearrow $\$ $\$ match (n) with labels(n) as 1, count(n) ... \neg

t	с
APPEARS_IN	1328
DESCRIBES	542
PART_OF	408
INPUT_TO	168
VARIANT_OF	150
OUTPUT_OF	76
INSTRUCTS	8
MODIFIES	4

I	с
[Variable, Mbz13]	293
[Variable]	124
[Attribute]	102
[Object]	93
[Model, Maintenance, Mbz13, Internal]	48
[Model]	42
[Variable, Mbz13, Internal]	40
[Model, Electricity, Mbz13]	24
[Model, Mechanics, Mbz13]	15
[Model, SiteConditions, Mbz13]	8
[Model, Hydrology, Mbz13]	6
[Model, Cost, CostOperationMaintenance, CostMaintenance, Mbz13]	6
[Procedure]	R

Content – Types, Labels, and Properties

Content is added to the graph by

- giving edges a type,
- giving nodes zero or more labels, and

[Procedure]

attaching any number of properties—key-value pairs—to nodes.

\$ match ()-[r]-() wi	th type(r) ㅋ
t	с
APPEARS_IN	1328
DESCRIBES	542
PART_OF	408
INPUT_TO	168
VARIANT_OF	150
OUTPUT_OF	76
INSTRUCTS	8
MODIFIES	4

<pre>% Match (h) with labels(h) as 1, count(</pre>	n) 🧷
I.	с
[Variable, Mbz13]	293
[Variable]	124
[Attribute]	102
[Object]	93
[Model, Maintenance, Mbz13, Internal]	48
[Model]	42
[Variable, Mbz13, Internal]	40
[Model, Electricity, Mbz13]	24
[Model, Mechanics, Mbz13]	15
[Model, SiteConditions, Mbz13]	8
[Model, Hydrology, Mbz13]	6
[Model, Cost, CostOperationMaintenance,	6
CostMaintenance, Mbz13]	

ccu (m:Model	{name:'Katic mixed wake mod	er.})	(v:variable) w	nere v.name contains "wake"	
		×			
	L Katić, J. Højstrup, and N.		author	sebastian,equaeghebeur	
əferencə	O.Jensen, A simple model		domain	real	
	for cluster efficiency. In		name	wake expansion factor	
	Proceedings of EWEC'86,		Linear an effected with which		
	volume 1, pages 407-410.			the units dispetes issues	
	Rome, 1987. John Twidell	description	developed according to the		
	(ed.) Offshore Wind Power,		lances model files colled		
	Chapter 4, Eq. 21. PhD		water denou an allelant		
	thesis Michiel Zaaijer, p.237.			Denoted k	
	We have not described the			Denoted K.	
ote	model for determining the				
	upstream wind tubines nor				
	mentioned mirror turbines to				
	take into account the ground				
	effect.				

Katić mixed wake model

Content & Structure – Representation challenges

When is variable an input to a model, an output, or both?

v.name	r.output
bending moment normal stress in monopile	true
outer diameter of monopile	false
bending moment on support structure	false
monopile wall thickness	false

Content & Structure – Representation challenges

A concept should only be represented once; what about models that deal with multiple instances of a concept?

Content & Structure – Representation challenges

How to isolate sub-models of a larger model and deal with the variables involved?

Implementation

- Native property graph database
- Java
- 'driver' (or wrapper) for many major languages (e.g., Python)
- Web interface for data entry and querying
- Shell access for importing and exporting data
- 'Community edition' (GPLv3) with limitations
- 'Enterprise edition' (AGLPv3) with clustering, live backups, etc.
- Mature and widely used (so free 'forum-based' support works)

Installation – Our setup

https://owfgraph.lr.tudelft.nl

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest*.
- Such questions require manual query tweaking:

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest*.
- Such questions require manual query tweaking:

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest*.
- Such questions require manual query tweaking:

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest.*
- Such questions require manual query tweaking:

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest.*
- Such questions require manual query tweaking:

- Queries—questions asked or instructions given—are formulated using Cypher.
- All screenshots are output resulting from queries.
- My interest is to query the database for possible *paths between variables of interest*.
- Such questions require manual query tweaking:

 Designing the foundational ontology takes quite a number of iterations and requires experience from adding content.

- Designing the foundational ontology takes quite a number of iterations and requires experience from adding content.
- Even with the foundational ontology more-or-less settled, structuring content is often difficult.

- Designing the foundational ontology takes quite a number of iterations and requires experience from adding content.
- Even with the foundational ontology more-or-less settled, structuring content is often difficult.
- Adding well-curated content takes time.

- Designing the foundational ontology takes quite a number of iterations and requires experience from adding content.
- Even with the foundational ontology more-or-less settled, structuring content is often difficult.
- Adding well-curated content takes time.
- System administration also requires a non-negligible effort.

- Designing the foundational ontology takes quite a number of iterations and requires experience from adding content.
- Even with the foundational ontology more-or-less settled, structuring content is often difficult.
- Adding well-curated content takes time.
- System administration also requires a non-negligible effort.

But overall very interesting and quite useful.

Current & Next Steps

Focus shift from content entry to use.

Current & Next Steps

• Focus shift from content entry to use.

• Make the database semi-public. (learning curve is an issue.)

• Open up and promote for other uses as well.

Live demo - Read-Only

- Surf to https://owfgraph.lr.tudelft.nl; login 'Euros', password '...'.
- Interface: command line at the top, output canvas below, info & control pane at the left.

Live demo - Read-Only

- Surf to https://owfgraph.lr.tudelft.nl; login 'Euros', password '...'.
- Interface: command line at the top, output canvas below, info & control pane at the left.
- Basic query:

match (n:Object) return (n) limit 3

Explore neighborhood interactively.

Live demo – Read-Only

- Surf to https://owfgraph.lr.tudelft.nl; login 'Euros', password '...'.
- Interface: command line at the top, output canvas below, info & control pane at the left.
- Basic query:

match (n:Object) return (n) limit 3

Explore neighborhood interactively.

Table output:

match (n:Object) with n limit 5
return n.name, n.description, n.author

Live demo – Read-Only

- Surf to https://owfgraph.lr.tudelft.nl; login 'Euros', password '...'.
- Interface: command line at the top, output canvas below, info & control pane at the left.
- Basic query:

```
match (n:Object) return (n) limit 3
```

Explore neighborhood interactively.

Table output:

match (n:Object) with n limit 5
return n.name, n.description, n.author

More involved queries:

match p = (:Object {name:"monopile"})-[*]->()
return p

- > Surf to https://rw.owfgraph.lr.tudelft.nl. (Currently only Sebastian & I have access.)
- Same interface, but now also write—and delete—queries are enabled.

- > Surf to https://rw.owfgraph.lr.tudelft.nl. (Currently only Sebastian & I have access.)
- Same interface, but now also write—and delete—queries are enabled.
- Creation (merging):

match (a:Attribute {name:"wind"})
merge (a)<-[:PART_OF]-(b {name:"wind color"})
return a, b</pre>

- > Surf to https://rw.owfgraph.lr.tudelft.nl. (Currently only Sebastian & I have access.)
- Same interface, but now also write—and delete—queries are enabled.
- Creation (merging):

match (a:Attribute {name:"wind"})
merge (a)<-[:PART_OF]-(b {name:"wind color"})
return a, b</pre>

Setting and removing labels and properties:

match (b {name:"wind color"})
set b:Attribute, b.author="killroy"
remove b.name
return b

- > Surf to https://rw.owfgraph.lr.tudelft.nl. (Currently only Sebastian & I have access.)
- Same interface, but now also write—and delete—queries are enabled.
- Creation (merging):

match (a:Attribute {name:"wind"})
merge (a)<-[:PART_OF]-(b {name:"wind color"})
return a, b</pre>

Setting and removing labels and properties:

match (b {name:"wind color"})
set b:Attribute, b.author="killroy"
remove b.name
return b

Deleting nodes and edges:

match (b {author:"killroy"}) detach delete b

Questions?

Feedback?