This poster introduces a procedure for eliciting coherent sets of acceptable gambles on three-outcome possibility spaces. We also discuss a real-life experiment conducted as an exploratory test of this elicitation interface; it was organized around the 2014 FIFA World Cup.

Because I’m inside a yellow box, I’m running example or some other illustration!

- **Introducing Sets of Acceptable Gambles**

 The CWI World Cup Competition

- **Essential Concepts**

 - **Possibility space** \(\Omega \), finite set of possible experimental outcomes.
 - **Gamble Space Representation**
 - **Coherence axioms**
 - **Assessment**
 - **Acceptable gamble**
 - **Possibility space** \(\Omega \)
 - **Natural extension**
 - **Reference value**
 - **Surface to project**

 - **An example:** \(g = 4I - 4W = (-1, 0, 4) \), with \(I \) indicator function notation.

- **Acceptable gamble**

 - An elicitor finds a gamble \(g \) acceptable if she is committed to receiving the payoff \(g(\omega) \) once the actual outcome \(\omega \in \Omega \) is determined.

- **Assessment** \(A \), a set of limited gambles assessed to be acceptable:

 \[
 A = \{ (6I - 1, 6W - 1, 4I - 4W) \}.
 \]

- **Coherence axioms**

 - A coherent set of acceptable gambles \(D \) should satisfy:
 - Avoiding Sure Loss: \(g < 0 \Rightarrow g \in D \).
 - Addition: \(g, h \in D \Rightarrow g + h \in D \).
 - Positive Homogeneity: \(g \geq 0 \Rightarrow \lambda g \in D \).
 - Accepting Partial Gains: \(g \geq 0 \Rightarrow g \in D \).

 \(D \) is a convex cone that includes the positive orthant and does not intersect the negative one.

- **Natural extension**

 - The smallest set of acceptable gambles that includes an assessment \(A \),
 - \(D = \{ f + \sum \lambda h : f \geq 0, \lambda \geq 0 \} \).

- **Intersection of \(D \) with the plane of gambles whose payoffs sum to one:

 \[
 I_{ND} - I_{W} = \frac{1}{4}
 \]

 (Dashed triangle delimits positive octant.)

- **Lower expectation or Preview**

 - The supremum acceptable buying price for the gamble \(h, \)
 - \(E(h) = \sup \{ a \in \mathbb{R} : a - \alpha \geq 0 \} \).

- **Credal set**

 - A convex subset of the probability simplex,
 - \(M = \{ P : E \subseteq F \} \).

- **Gamble Space Representation**

 - **Problem** Not all coherent sets of acceptable gambles can be (comparably) depicted by their intersection with a plane, as was done above.

- **Considerations**

 - Representation on a two-dimensional surface is possible by Positive Homogeneity.

 \[
 \sum_{o} g(o) = 0 \text{ for } g \in D,
 \]

 \[
 \sum_{o} P(o) g(o) = 0 \text{ for } P \in M.
 \]

- **An instance of the experiment’s interface, including an assigned gamble:**

- **Implementation**

 - **Discretization**
 - Computing natural extension Responsively.
 - Show gamble values on hover, without a distracting number of significant digits.

- **Results**

 - **Match assessments** 194 in total.
 - **Completeness**
 - Proportion of gambles being acceptable or rejected:
 - A good 20% of assessments were complete.
 - **Rerepresentation of**
 - A set of gambles summing to the zero gamble,
 - A pair of opposite ‘simple’ gambles,
 - A pair of opposite ‘simple’ gambles, with equal nonnegative lower expectation.

- **Our fair bets**

 - Between all in a pool of participants:
 - A set of gambles summing to the zero gamble,
 - With equal nonnegative lower expectation,
 - Maximizing the sum of lower expectations (participants could be excluded from the bet).

 - (Involves a mixed-integer linear program.)

- **Walley’s fair bets**

 - Between a pair of participants:
 - A pair of opposite ‘simple’ gambles,
 - With equal nonnegative lower expectation.

- **Selecting dots per assessment**

 - **A participant’s played-match list at the end of the competition:**
 - 17 academic participants; 36 matches
 - 17 academic participants; 36 matches

- **Selected gambles distribution**

 - Primarily gambles on the axes and contingent gambles were chosen, but not overwhelmingly so.

- **Relative gamble selection frequency** (\(\langle \text{dot area} \rangle \):

- **The Experiment**

 - **1982 World Cup** (Walley’s experiment)
 - Eliciting lower and upper probabilities
 - Pen & paper interface (?)
 - 17 academic participants; 36 matches
 - Assessments evaluated using the 6000+ possible pairwise ‘fair’ bets between them

- **2014 World Cup** (Our experiment)

 - Eliciting acceptable gambles
 - On-line point-and-click interface ensuring coherence
 - 80 mostly academic participants; 32 matches
 - Assessments used in a betting pool; 100 ‘fair’ gambles assigned in total

- **Conclusions**

 - When given the option, people provide imprecise assessments.

 - Credal sets for the final match, GER-ARG:
 - The labeled simplex on the left contains the assessment shown earlier for this match.

 - From participant feedback, we learned that the interface needs to be easier to understand.
 - Often, many participants, mostly with relatively imprecise assessments, were excluded from bets. To improve feedback to users, the gamble assignment algorithm should be extended to be more inclusive.