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Introduction



The meaning of inference in this lecture

I Learning from data

I Learning a probabilistic model from data

I Learning an imprecise probabilistic model from data

I Learning and updating an imprecise probabilistic model from data

I Learning and updating an imprecise probabilistic model from samples
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The nature of inference models
I Induction

Let men be once fully perswaded of these two principles, that there is
nothing in any object, consider’d in itself, which can afford us a reason
for drawing a conclusion beyond it; and, that even after the
observation of the frequent or constant conjunction of objects, we have
no reason to draw any inference concerning any object beyond those of
which we have had experience; I say, let men be once fully convinc’d of
these two principles, and this will throw them so loose from all
common systems, that they will make no difficulty in receiving any,
which may appear the most extraordinary.

Hume in A treatise of human nature [1739, §1.3.12, ¶20]

I There is nothing in any object, consider’d in itself, which can afford us
a reason for drawing a conclusion beyond it.

I Even after the observation of the frequent or constant conjunction of
objects, we have no reason to draw any inference concerning any
object beyond those of which we have had experience.

I So anything goes?
I Not in practice, experience tells us.
I But yes, we should not dogmatically stick to a given system.
I And evaluate different systems using the actual data.

I The importance of assumptions, principles, convenience, and
interpretability

I sampling model
I exchangeability, iid
I invariance under symmetry operations
I simplicity, mathematical tractability
I specificity, partition exchangeability,. . .
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The plan

1. Inference for exponential families
1.1 An example to introduce the theory
1.2 An exercise to practice the theory

2. Symmetry considerations

3. Exchangeability and its consequences



Example:
Inference for Poisson samples



Example: the data
Observed numbers of emails arriving in Gert’s mailbox between 9am and
10am on ten consecutive Mondays:

2 7 5 3 3 3 1 5 1 2.

Number of samples: N = 10. (Write this down!)
The sample mean: x̄ = 3.2. (Write this down!)
Order statistics x(i) with 0 ≤ i ≤ 10: (Write this down!)

1 1 2 2 3 3 3 5 5 7.

Count and frequency vectors: (Write this down!)

Value z 1 2 3 5 7
Counts nz 2 2 3 2 1

Frequencies fz 0.2 0.2 0.3 0.2 0.1

(Assumptions: order in sequence does not matter,. . . )
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Example: visualizing the data
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Example: visualizing the data slightly differently
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Distribution-free immediate predictive inference
I Just use the empirical probability mass function f ?

I Nonparametric Predictive Inference approach:
Assign equal probability mass between each pair
of observations in the order statistics.

So assign mass 1
N+1 to [x(i), x(i+1)] for 0 ≤ i ≤ N ,

with x(0) = 0 and x(N+1) = +∞ (assumed range).

So, for example, a mass in [max{0, nz−1
N+1 }, nz+1

N+1 ] for every value z.
(Do you see why? Can you calculate some values?)

z0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3
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Distribution-free immediate predictive inference

I Just use the empirical probability mass function f ?

I Linear-vacuous model obtained by adding a number s > 0 of
pseudo-counts or pseudo-observations:

Consider all probability mass functions that result
by considering all possible distributions of the
pseudo-counts over the possible observation values.

So we assign a mass in [ nz
N+s , nz+s

N+s ] for every value z.
(Do you see why? Can you calculate some values?)

Also called 𝜀-contaminated model: [(1 − 𝜀)fz , (1 − 𝜀)fz + 𝜀]
for every value z, with 𝜀 = s

N+s .

I Different from NPI, we now use a parameter, s,
that regulates the learning rate.
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Example: visualizing the linear-vacuous model for s = 1
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Example: visualizing the linear-vacuous model for s = 5
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Example: assuming a Poisson sampling model

I A probabilistic model for the number of events occurring in a fixed
interval Δt > 0 (here one hour)

I Underlying assumptions about event occurrence:
I fixed average rate 𝜆̇ ≥ 0 (here unknown),
I independent of the time since the last event.

I Probability mass assigned by the Poisson distribution with parameter
𝜆 := 𝜆̇Δt to any possible number of occurrences z ≥ 0 is

pPs(z | 𝜆) := 1
z!𝜆

z exp(−𝜆).

I The expected number of events in this interval is equal to 𝜆.
(Easiest way to see this?)
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Example: visualizing the Poisson distribution (𝜆 = x̄ = 3.2)
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Example: visualizing the Poisson distribution (𝜆 = 𝜆̂ = 3.2)
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Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed
I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).



Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed

I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).



Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed
I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).



Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed
I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).



Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed
I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).



Example: the Poisson likelihood
I Likelihood function, reversing the roles of the parameter and values in

the expression of the probability mass function:

Lz(𝜆) := pPs(z | 𝜆) = 1
z!𝜆

z exp(−𝜆).

I iid assumption: samples are independently and identically distributed
I Likelihood function for multi-sample sequence: (Explicit expression?)

Lx(𝜆) := p(x | 𝜆) =
N∏︁

i=1
pPs(xi | 𝜆)

=
N∏︁

i=1
Lxi (𝜆) = 1∏︀N

i=1 xi !
𝜆Nx̄ exp(−N𝜆).

I Maximum likelihood estimate 𝜆̂ = x̄. (Can you quickly derive this?)

I Fixing N , the sample mean x̄ is a sufficient statistic
(Lx(𝜆) = fN (𝜆, x̄)h(x)).
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Example: heuristic 90% confidence-based imprecise model
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Example: Bayesian parametric inference

I Assume given, before observing any samples, a prior probability
distribution over the possible parameter values, with probability
density p(𝜆) for all 𝜆 ≥ 0.

I Given an observation x, we can update the prior by conditioning
using Bayes’s rule for density functions:

p(𝜆 | x) ∝ Lx(𝜆)p(𝜆).

We obtain the (parametric) posterior density function p(· | x).

Refresher exercise for (standard) Bayes’s rule: Given a uniform prior probability mass function
for 𝜆 ∈ {2, 4}, the expression for the posterior probability of 𝜆 = 2 is of the form 1

1+g(z) . Give
the expression for g.

Answer: g(z) = 2z exp(−2).
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Example: Conjugate Bayesian inference — the prior
I General priors: posterior difficult to obtain in closed analytic form.
I Mathematical convenience: use conjugate priors.

Derivation of conjugate prior for the Poisson likelihood:

p(𝜆 | x) ∝ Lx(𝜆)p(𝜆) ∝ 𝜆Nx̄ exp(−N𝜆)p(𝜆).

So take p(𝜆) ∝ 𝜆a exp(−b𝜆).

Normalization? Gamma integral for r > 0 and k ∈ N: (Write this down!)

Γ(r) =
∫︁ ∞

0
tr−1 exp(−t)dt, Γ(r + 1)

Γ(r) = r , k! = Γ(k + 1).

So, for notational convenience, take 𝛼 = a + 1 > 0 and 𝛽 = b > 0.
(Now calculate the normalization factor.)

The Gamma distribution is conjugate to the Poisson likelihood; its density:

pGa(𝜆 | 𝛼, 𝛽) := 𝛽𝛼

Γ(𝛼)𝜆𝛼−1 exp(−𝛽𝜆).
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p(𝜆 | x) ∝ Lx(𝜆)p(𝜆) ∝ 𝜆Nx̄ exp(−N𝜆)p(𝜆).

So take p(𝜆) ∝ 𝜆a exp(−b𝜆).

Normalization? Gamma integral for r > 0 and k ∈ N: (Write this down!)

Γ(r) =
∫︁ ∞

0
tr−1 exp(−t)dt, Γ(r + 1)

Γ(r) = r , k! = Γ(k + 1).

So, for notational convenience, take 𝛼 = a + 1 > 0 and 𝛽 = b > 0.
(Now calculate the normalization factor.)

The Gamma distribution is conjugate to the Poisson likelihood; its density:

pGa(𝜆 | 𝛼, 𝛽) := 𝛽𝛼

Γ(𝛼)𝜆𝛼−1 exp(−𝛽𝜆).
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Example: visualization of Gamma prior (s = 1, t = 5)

z0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

𝜆0 1 2 3 4 5 6 7 8 9
0

0.5

1



Example: visualization of Gamma prior (s = 5, t = 5)
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Example: Conjugate Bayesian inference — the posterior
Derivation of the posterior probability density function’s expression:

p(𝜆 | x) ∝ Lx(𝜆)pGa(𝜆 | s, t)

∝ 𝜆Nx̄ exp(−N𝜆)𝜆st−1 exp(−s𝜆)

= 𝜆Nx̄+st−1 exp(−(N + s)𝜆) ∝ pGa

(︂
𝜆

⃒⃒⃒⃒
N + s,

Nx̄ + st
N + s

)︂
.

Conjugate nature:
I Prior and posterior distribution belong to the same family.
I Parameters are easy to update: sum of pseudocounts and sample

counts, mixture of prior mean and sufficient statistic.
I Posterior mean Nx̄+st

N+s .
Expectation of a function f of the parameter 𝜆?∫︁ ∞

0
f (𝜆)pGa(𝜆 | s̃, t̃)d𝜆 = s̃s̃t̃

Γ(s̃t̃)

∫︁ ∞

0
f (𝜆)𝜆Nx̄+s̃t̃−1 exp(−(N + s̃)𝜆)d𝜆

(For which f is this ‘straightforward’?)
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Example: visualization of Gamma posterior (s = 1, t = 5)
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Example: visualization of Gamma posterior (s = 5, t = 5)
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Example: Conjugate imprecise probabilistic inference

I Hard to justify a single prior, so use a set of priors.
I Mathematical convenience: use conjugate priors.

I How do we generate such a set: varying parameters s and t in some
subset of the possible values.

I Here:
I keep s fixed — interpret as a learning rate,
I vary t — so uncertainty about the prior mean.

Set of probability density functions:{︀
pGa(𝜆 | s̃, t̃) : t ∈ [t, t]

}︀
(Can you easily calculate the lower and upper probability density functions?)

(Which deductive inferences are ‘straightforward’ to calculate?)

I Set of values for t must be bounded in the direction to learn in.
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Example: Visualiz. of Gamma priors (s = 1, t ∈ [2, 8])
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Example: Visualiz. of Gamma posteriors (s = 1, t ∈ [2, 8])
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Example: Visualiz. of Gamma priors (s = 5, t ∈ [2, 8])
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Example: Visualiz. of Gamma posteriors (s = 5, t ∈ [2, 8])
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Example: Parametric to predictive inference — joint
I Given is a conjugate parametric model.
I We wish to do predictive inference:

inference about a sequence y of M unseen observations.

I In case the parameter 𝜆 is known, then by the iid assumption we
know the joint probability mass function

p(y | 𝜆) :=
M∏︁

i=1
pPs(yi | 𝜆).

I But we are uncertain about 𝜆.
I Assume a precise (prior or posterior) conjugate model, i.e., a density

pGa(𝜆 | s̃, t̃).
I The joint density’s expression is

p(y, 𝜆 | s̃, t̃) = p(y | 𝜆)pGa(𝜆 | s̃, t̃)
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Example: Parametric to predictive inference — marginal
Deriving the predictive mass function: marginalize to y, so integrate out 𝜆:

p(y | s̃, t̃) =
∫︁ ∞

0
p(y | 𝜆)p(𝜆 | s̃, t̃)d𝜆

=
∫︁ ∞

0
Ly(𝜆)p(𝜆 | s̃, t̃)d𝜆

= 1∏︀M
i=1 yi !

s̃s̃t̃

Γ(s̃t̃)
Γ(Mȳ + s̃t̃)

(M + s̃)Mȳ+s̃t̃

∫︁ ∞

0
p
(︂

𝜆

⃒⃒⃒⃒
M + s̃,

Mȳ + s̃t̃
M + s̃

)︂
d𝜆

= Γ(Mȳ + s̃t̃)
Γ(s̃t̃)∏︀M

i=1 yi !

(︂ s̃
M + s̃

)︂s̃t̃ 1
(M + s̃)Mȳ .

(What is the explicit expression for the posterior?)

p
(︁

y
⃒⃒⃒

N + s,
Nx̄ + st
N + s

)︁
=

Γ(Mȳ + Nx̄ + st)
Γ(Nx̄ + st)

∏︀M
i=1 yi !

(︁ N + s
M + N + s

)︁Nx̄+st 1
(M + N + s)Mȳ

Using this mass function requires numerical computations in general.
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(What is the explicit expression for the posterior?)

p
(︁

y
⃒⃒⃒

N + s,
Nx̄ + st
N + s

)︁
=
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Γ(Mȳ + Nx̄ + st)
Γ(Nx̄ + st)

∏︀M
i=1 yi !

(︁ N + s
M + N + s

)︁Nx̄+st 1
(M + N + s)Mȳ
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Example: Parametric to predictive inference — immediate

Immediate prediction is inference about one unknown observation (e.g.,
the next one), so M := 1:

p(z | s̃, t̃) = Γ(z + s̃t̃)
Γ(s̃t̃)z!

(︂ s̃
1 + s̃

)︂s̃t̃ 1
(1 + s̃)z

=
(︃

z + s̃t̃ − 1
z

)︃(︂
1 − 1

1 + s̃

)︂s̃t̃(︂ 1
1 + s̃

)︂z
.

This is the negative binomial distribution:
I the probability of ‘success’: 1

1+s̃
I the possibly non-integer number of ‘failures’ s̃t̃

that determine when sampling is stopped
(Interpretation in terms of number of arriving mails?)

(What is the mean?)
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Example: Visualiz. of negative binomial prior (s = 1, t = 5)
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Example: Visualiz. of neg. binomial posterior (s = 1, t = 5)

z0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

z0 1 2 3 4 5 6 7 8 9
0

0.5

1



Example: Visualiz. of negative binomial prior (s = 5, t = 5)

z0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

z0 1 2 3 4 5 6 7 8 9
0

0.5

1



Example: Visualiz. of neg. binomial posterior (s = 5, t = 5)
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Example: imprecise-probabilistic predictive inference

Set of probability mass functions:{︀
p(y | s̃, t̃) : t ∈ [t, t]

}︀

(Can you easily calculate the lower and upper probability mass functions?)
(Which deductive inferences are ‘straightforward’ to calculate?)
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Example: Visualiz. of neg. binomial priors (s = 1, t ∈ [2, 8])
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Example: Visualiz. of neg. binom. post’s (s = 1, t ∈ [2, 8])
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Example: Visualiz. of neg. binomial priors (s = 5, t ∈ [2, 8])
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Example: Visualiz. of neg. binom. post’s (s = 5, t ∈ [2, 8])
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Exercise



Exercise: Data
Gert labels some emails he receives as interesting (I ). We label the others
with a U .
Within a busy hour, he gets

I U U U I I I U U I

1. Number of samples N? Order statistics? Count and frequency vectors
n = (nI , nU ) and f = (fI , fU )?

2. Write down the lower and upper probability values for I (and U )
resulting from the NPI reasoning.

3. Write down the expressions for the lower and upper probability values
for I (and U ) produced by 𝜀-contaminating the frequency vector.
What are the values obtained by choosing 𝜀 values that correspond
to 1 and 5 pseudocounts, respectively. Compare with the NPI model.
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Exercise: Sampling model

Bernoulli process, iid ‘flips of a coin’ with chance 𝜗 of receiving an
interesting mail:

pBr(z | 𝜗) =
{︃

𝜗, z = I ,

1 − 𝜗, z = U .

(To symmetrize, use (𝜃I , 𝜃U ) = (𝜗, 1 − 𝜗).)

1. Qualitative difference in expressiveness as compared to Poisson case?
2. Likelihood function? For sequence of N samples?
3. Maximum likelihood estimate 𝜗?
4. Fixing N , what possibly vectorial quantities are sufficient statistics?

Which of these are of minimal dimension?
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Exercise: the conjugate distribution
The conjugate distribution for binomial sampling is the Beta distribution,
for which the the following expression (with u > 0, v > 0) allows us to
compute the normalization factor:∫︁ 1

0
tu−1(1 − t)v−1dt = Γ(u)Γ(v)

Γ(u + v) .

1. Derive the expression for the density function of the conjugate
distribution, both in terms of ‘mathematical’ parameters 𝛼 and 𝛽 and
in terms of counts s and mean vector t = (tI , tU ), with tI = 1 − tU .

2. What are the posterior parameters as a function of s, t, N , and f ?
3. Visualize the priors and posteriors for:

I Laplace prior: s = 2, tI = 1
2 ;

I Haldane prior: s = 0;
I Jeffrey prior: s = 1, t = 1

2 ;
I Imprecise prior: s = 1, tI ∈ [0, 1];
I Imprecise prior: s = 5, tI ∈ [0, 1].

Discuss what you see, especially the impact of s.
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Example: visualization of Laplace prior (s = 2, tI = 1
2)
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Example: visualization of Laplace posterior (s = 2, tI = 1
2)
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Example: visualization of Haldane prior (s = 0)
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Example: visualization of Haldane posterior (s = 0)
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Example: visualization of Jeffrey prior (s = 1, tI = 1
2)
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Example: visualization of Jeffrey posterior (s = 1, tI = 1
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Example: Visualization of Beta priors (s = 1, tI ∈ [0, 1])
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Example: Visualization of Beta post’s (s = 1, tI ∈ [0, 1])
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Example: Visualization of Beta priors (s = 5, tI ∈ [0, 1])
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Example: Visualization of Beta post’s (s = 5, tI ∈ [0, 1])
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Exercise: from parametric to predictive inference
The conjugate predictive distribution for binomial sampling is the
Beta-binomial distribution, whose expression can be written somewhat
compactly using generalized binomial coefficients (r > 0 and k ≥ 0):(︃

k + r − 1
r

)︃
= Γ(k + r)

k!Γ(r) .

1. Derive the expression of the Beta-binomial probability mass function,
both in prior and posterior versions.

2. Write down the expression for the posterior Beta-binomial probability
mass function for immediate prediction and simplify it using
properties of the Gamma function. Compare the result with the
expressions obatained for the NPI model and linear-vacuous model.

3. If s = 5 and t ∈ [0, 1], what are the prior and posterior probability
intervals for the event that the next two observations are both
interesting?
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Symmetry considerations



The framework

We are uncertain about something: the value that a variable X assumes in
a finite set 𝒳 .

The models we will use are coherent lower previsions P, or equivalently,
convex closed sets ℳ of mass functions p—also called credal sets.



Mass functions

A (probability) mass function p on 𝒳 is a real-valued map on 𝒳 such that

(∀x ∈ 𝒳 )p(x) ≥ 0 and
∑︁
x∈𝒳

p(x) = 1.

We denote the set (simplex) of all mass functions on 𝒳 by Σ𝒳 .

With a mass function p there corresponds an expectation operator Ep
defined on the set ℒ(𝒳 ) of all gambles on 𝒳 :

Ep(f ) :=
∑︁
x∈𝒳

p(x)f (x) for all f : 𝒳 → R.



Lower and upper previsions

A coherent lower prevision on ℒ(𝒳 ) is a map ℒ(𝒳 ) → R with the
following properties:

1. P(f ) ≥ min f for all f ∈ ℒ(𝒳 ) [bounds]
2. P(f + g) ≥ P(f ) + P(g) for all f , g ∈ ℒ(𝒳 ) [super-additivity]
3. P(𝜆f ) = 𝜆P(f ) for all f ∈ ℒ(𝒳 ) and all real 𝜆 ≥ 0 [non-negative

homogeneity]

Its conjugate upper prevision is defined by

P(f ) := −P(−f ) for all f ∈ ℒ(𝒳 ).



Credal sets
With a convex closed set ℳ of mass functions, we can construct a
coherent lower prevision and the conjugate upper prevision on ℒ(𝒳 ) by

P(f ) := min{Ep(f ) : p ∈ ℳ} for all f : 𝒳 → R
P(f ) := max{Ep(f ) : p ∈ ℳ} for all f : 𝒳 → R.

Conversely, with a coherent lower prevision P there corresponds a convex
closed set of mass functions, given by

ℳ := {p ∈ Σ𝒳 : (∀f ∈ ℒ(𝒳 ))Ep(f ) ≥ P(f )}.

A precise model is a singleton ℳ = {p} and the associated lower
prevision is the (self-conjugate) expectation operator Ep:

Ep(−f ) = −Ep(f ) for all f ∈ ℒ(𝒳 ).



Symmetry

Symmetry is typically modelled by considering a collection of
transformations of the space of interest.

Something is considered to be symmetrical when it is left unchanged by
these transformations.



Symmetry groups

We will focus on a group 𝒫 of permutations 𝜋 of 𝒳 , meaning that:
1. 𝜋1 ∘ 𝜋2 ∈ 𝒫 for all 𝜋1, 𝜋2 ∈ 𝒫 [internality]
2. 𝜋1 ∘ (𝜋2 ∘ 𝜋3) = (𝜋1 ∘ 𝜋2) ∘ 𝜋3 for all 𝜋1, 𝜋2, 𝜋3 ∈ 𝒫 [associativity]
3. 𝜋 ∘ id = id ∘𝜋 for all 𝜋 ∈ 𝒫 [neutral element]
4. For all 𝜋 ∈ 𝒫 there is some 𝜋−1 ∈ 𝒫 such that

𝜋 ∘ 𝜋−1 = 𝜋−1 ∘ 𝜋 = id [inverse]



Running example: permutations

We flip a coin twice, and the uncertain outcome X is an element of the
finite set 𝒳 = {HH , HT , TH , TT}.

The symmetry we consider is that the order of the observations does not
matter, which leads us to identify HT with TH .

𝒫 = {id, 𝜛},

where 𝜛 is the permutation defined by(︃
HH HT TH TT
HH TH HT TT

)︃
.

This a group, with 𝜛2 = 𝜛 ∘ 𝜛 = id, so 𝜛−1 = 𝜛.



Lifting

Our uncertainty models involve gambles, so we need a way to let
permutations act on gambles.

This is done by lifting:

𝜋tf := f ∘ 𝜋 for any 𝜋 ∈ 𝒫,

meaning that
(𝜋tf )(x) := f (𝜋x) for all x ∈ 𝒳 .



Running example: lifting

For the gamble
f = 2I{HH ,TT} − I{HT ,TH},

we see that 𝜛tf = f —we call this gamble permutation invariant.

and for the gamble

g = I{HH ,HT} − 3I{TH ,TT},

the permuted gamble is

𝜛tg = I{HH ,TH} − 3I{HT ,TT}.



Running example: lifting
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g = I{HH ,HT} − 3I{TH ,TT},

the permuted gamble is

𝜛tg = I{HH ,TH} − 3I{HT ,TT}.



Invariant gambles and events

A gamble f is permutation invariant if it is left unchanged by the
permutations, so

𝜋tf = f or equivalently f ∘ 𝜋 = f for all 𝜋 ∈ 𝒫.

An event A ⊆ 𝒳 is permutation invariant if its indicator IA is:

(∀x ∈ A)𝜋x ∈ A or equivalently 𝜋(A) = A, for all 𝜋 ∈ 𝒫.



Invariant atoms

The smallest invariant sets are the so-called invariant atoms

[x] := {𝜋x : 𝜋 ∈ 𝒫},

which constitute a partition of 𝒳 .

We denote the set of all invariant atoms by 𝒜𝒫 .

A gamble is permutation invariant if and only if it is constant on the
invariant atoms.

So a permutation invariant gamble is completely determined by the values
it assumes on the invariant atoms.



Running example: invariant atoms and gambles

The invariant atoms are

[HH ] = {HH} and [HT ] = [TH ] = {HT , TH} and [TT ] = {TT}.

The permutation invariant gambles are the ones that are constant on
[HT ] = [TH ] = {HT , TH} and therefore give the same value to HT and
TH .
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Symmetrical models: (weak) invariance

The uncertainty models ℳ and P are symmetrical: (weakly) invariant
under the permutations in 𝒫:

(∀f ∈ ℒ(𝒳 ))P(f ) = P(𝜋tf ) or equivalently P = P ∘ 𝜋t , for all 𝜋 ∈ 𝒫

and this is equivalent to

(∀p ∈ ℳ)𝜋tp ∈ ℳ for all 𝜋 ∈ 𝒫,

where 𝜋tp := p ∘ 𝜋.
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A precise model ℳ = {p}, or equivalently, a self-conjugate lower prevision
(expectation operator) Ep, is therefore invariant if and only if

𝜋tp = p or equivalently Ep ∘ 𝜋t = Ep, for all 𝜋 ∈ 𝒫.



Running example: weak invariance

Consider the mass functions

p1 := 1
3I{HH ,HT} + 1

6I{TH ,TT} and p2 := 1
3I{TH ,HH} + 1

6I{HT ,TT}

Observe that 𝜛tp1 = p2 and consequently also 𝜛tp2 = p1, so these
precise models are not permutation invariant with respect to 𝒫.

The credal set

ℳ1 := {𝛼p1 + (1 − 𝛼)p2 : 𝛼 ∈ [0, 1]}

is permutation invariant, because

𝜛t [𝛼p1 + (1 − 𝛼)p2] = 𝛼𝜛tp1 + (1 − 𝛼)𝜛tp2 = 𝛼p2 + (1 − 𝛼)p1 ∈ ℳ1.
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Strong invariance: motivation

The subject believes that the ‘mechanism generating the observations of
the variable X is symmetrical’.

Consider any gamble f .

If the subject believes there is this symmetry, he will be indifferent
between f and its permutations 𝜋tf , for all 𝜋 ∈ 𝒫.

He is willing to exchange f for 𝜋tf when paid any positive amount of
utility 𝜖 > 0:

P(𝜋tf − f + 𝜖) ≥ 0 for all 𝜖 > 0,



Strong invariance: criterion

Requirement for strong invariance (with respect to 𝒫):

P(𝜋tf − f ) = P(𝜋tf − f ) = 0 for all f ∈ ℒ(𝒳 ) and all 𝜋 ∈ 𝒫.

Equivalent to the following requirement for credal sets ℳ:

(∀p ∈ ℳ)𝜋tp = p, for all 𝜋 ∈ 𝒫.

So a lower prevision is strongly invariant if and only if it is a lower
envelope of (weakly and therefore strongly) invariant precise expectations.



Running example: strong invariance

The mass functions

p3 := 1
3I{HH ,TT} + 1

6I{HT ,TH} and p4 := 1
6I{HH ,TT} + 1

3I{HT ,TH}

are permutation invariant: 𝜛tp3 = p3 and 𝜛tp4 = p4.

The credal set

ℳ2 := {𝛼p3 + (1 − 𝛼)p4 : 𝛼 ∈ [0, 1]}

is strongly permutation invariant, because

𝜛t [𝛼p3 + (1 − 𝛼)p4] = 𝛼𝜛tp3 + (1 − 𝛼)𝜛tp4 = 𝛼p3 + (1 − 𝛼)p4.
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Running example: independent strongly permutation
invariant models

The independent and permutation invariant precise models are given by

pr := r2I{HH} + r(1 − r)I{HT ,TH} + (1 − r)2I{TT}, for r ∈ [0, 1].

This implies that, for instance, the credal set

ℳr1,r2 := {𝛼pr1 + (1 − 𝛼)pr2 : 𝛼 ∈ [0, 1]}

is strongly independent and permutation invariant, for any choice of
r1, r2 ∈ [0, 1].
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This implies that, for instance, the credal set
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The indifferent gambles

Consider the following linear subspace:

ℐ𝒫 := span({𝜋tf − f : f ∈ ℒ(𝒳 ) and 𝜋 ∈ 𝒫}).

P is strongly invariant if and only if

P(g) = P(g) = 0 for all g ∈ ℐ𝒫 ,

so we can see ℐ𝒫 as the linear subspace of indifferent gambles: the
gambles that the subject judges to be equivalent to the zero gamble.



The permutation invariant gambles

The linear subspace of permutation invariant gambles

ℒ𝒫(𝒳 ) := {f ∈ ℒ(𝒳 ) : (∀𝜋 ∈ 𝒫)𝜋tf = f }

is the set of all gambles that are constant on the invariant atoms.

They are completely determined by the values that they assume on these
invariant atoms, and the dimension of this space ℒ𝒫(𝒳 ) is therefore the
same as the dimension of the linear space ℒ(𝒜𝒫) that is linearly
isomorphic to it, and therefore equal to the number of invariant atoms.

This is generally smaller than the dimension |𝒳 | of the original space
ℒ(𝒳 ): typically, the more permutations there are in 𝒫, the fewer invariant
atoms there are.



Running example: indifferent and invariant gambles
The subspace of indifferent gambles is given by:

ℐ𝒫 =
{︀
𝜆(I{HT} − I{TH}) : 𝜆 ∈ R

}︀
,

and is one-dimensional.
The subspace of permutation invariant gambles is given by:

ℒ𝒫(𝒳 ) =
{︀
𝜆1I{HH} + 𝜆2I{TH ,HT} + 𝜆3I{TT} : 𝜆1, 𝜆2, 𝜆3 ∈ R

}︀
,

and has dimension 3.
Observe that ℐ𝒫 ∩ ℒ𝒫(𝒳 ) = {0}, and that

ℒ𝒫(𝒳 ) + ℐ𝒫

=
{︀
𝜆1I{HH} + 𝜆2I{TH ,HT} + 𝜆3I{TT} + 𝜆(I{HT} − I{TH}) : 𝜆, 𝜆1, 𝜆2, 𝜆3 ∈ R

}︀
=
{︀
𝜆1I{HH} + (𝜆2 − 𝜆)I{TH} + (𝜆2 + 𝜆)I{HT} + 𝜆3I{TT} : 𝜆, 𝜆1, 𝜆2, 𝜆3 ∈ R

}︀
= ℒ(𝒳 ).
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The projection operator

Consider the following operator inv𝒫 , which maps any gamble to the
uniform average of all its permutations:

inv𝒫 f := 1
|𝒫|

∑︁
𝜋∈𝒫

𝜋tf .

This is a linear transformation of ℒ(𝒳 ) that satisfies the following
properties:

1. inv𝒫 ∘ 𝜋t = inv𝒫 = 𝜋t ∘ inv𝒫 for all 𝜋 ∈ 𝒫 [permutation invariance]
2. inv𝒫 ∘ inv𝒫 = inv𝒫 [projection]
3. kern(inv𝒫) = ℐ𝒫 [kernel]
4. rng(inv𝒫) = ℒ𝒫(𝒳 ) [range]



The uniform distributions over the atoms

The permutation invariant gamble inv𝒫 f is constant on the invariant
atoms.

The constant value it assumes there can also be written as:

(inv𝒫 f )(x) = 1
|𝒫|

∑︁
𝜋∈𝒫

f (𝜋x) = 1
|[x]|

∑︁
y∈[x]

f (y) =: U (f |[x]) for all x ∈ 𝒳 ,

which is the expectation associated with the uniform distribution over the
atom [x].

We can see U as a linear map taking gambles f on 𝒳 to the
corresponding gambles U (f |·) on 𝒜𝒫 :

U : ℒ(𝒳 ) → ℒ(𝒜𝒫), where U (f )([x]) := U (f |[x]) = 1
|[x]|

∑︁
y∈[x]

f (y),



Strong invariance representation theorem
Any gamble f can be decomposed uniquely into a permutation invariant
part and an indifferent part:

f = inv𝒫 f⏟  ⏞  
∈ℒ𝒫 (𝒳 )

+ f − inv𝒫 f⏟  ⏞  
∈ℐ𝒫

and using coherence, we derive from this that

P(inv𝒫 f ) + P(f − inv𝒫 f )⏟  ⏞  
=0

≤ P(f ) ≤ P(inv𝒫 f ) + P(f − inv𝒫 f )⏟  ⏞  
=0

.

Theorem (Strong Invariance Representation Theorem)
A coherent lower prevision P is strongly invariant with respect to 𝒫 if and
only if any (and hence all) of the following equivalent statements holds:

1. P = P ∘ inv𝒫 ;
2. There is a coherent lower prevision Q on ℒ(𝒜𝒫) such that

P = Q ∘ U .



Strong invariance representation theorem

ℒ(𝒳 ) ℒ𝒫(𝒳 )

R ℒ(𝒜𝒫)

Q ∘ U = P

inv𝒫

C𝒫

Q

U



Running example: representation

With 𝒫 = {id, 𝜛}, we have inv𝒫 = 1
2(id +𝜛t), and therefore

inv𝒫 h(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h(HH ) if x = HH

h(TT ) if x = TT
h(HT ) + h(TH )

2 if x = HT or x = TH .

All permutation invariant expectation operators have the following form:

Eq(h) = h(HH )q([HH ]) + h(HT ) + h(TH )
2 q([HT ]) + h(TT )q([TT ]),

where q is any mass function on 𝒜𝒫 .
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Exchangeability and its
consequences



What is exchangeability?

We consider a process:

X1, X2, X3, . . . , Xn , · · · ∈ 𝒳

A subject calls these variables exchangeable if he decides that the
inferences and decisions he makes about these variables will not
dependent on the order in which these variables are observed.

Here: special case that 𝒳 = {H , T}, but the extension to more general
cases is straightforward.



The set of possible outcomes

Let us first look at a finite number n of coin flips.

The uncertain outcomes in this situation are now sequences of H and T
of length n.

The set of possible outcomes x = (x1, . . . , xn) is

𝒳 n = {(x1, . . . , xn) : xk ∈ {H , T}}



Running example: possible outcomes

Let us look at the case n = 3.

The possible outcomes x are:

HHH HHT HTH HTT THH THT TTH TTT ,

and all these outcomes make up the set of possible outcomes {H , T}3.



The group of permutations

The subject’s assumption that the order of observations will not matter
leads us to consider the following type of symmetry.

Consider all permutations 𝜋 of the index set {1, 2, . . . , n}.

We can use these permutations to turn a sequence of observations
x = (x1, x2, . . . , xn) into a permuted sequence of observations:

𝜋x := (x𝜋(1), x𝜋(2), . . . , x𝜋(n)).

This allows us to define a permutation group 𝒫n on 𝒳 n .



Running example: the permutations
The 3! = 6 possible permutations of the index set {1, 2, 3}, and their
actions on the sequence HTH are:(︃

1 2 3
1 2 3

)︃
HTH →

HTH

(︃
1 2 3
3 1 2

)︃
HTH →

HHT

(︃
1 2 3
2 3 1

)︃
HTH →

THH

(︃
1 2 3
1 3 2

)︃
HTH →

HHT

(︃
1 2 3
2 1 3
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THH
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1 2 3
3 2 1
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HTH →
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Running example: the permutations

With the permutation 𝜋 =
(︃

1 2 3
3 2 1

)︃
of the index set {1, 2, 3} there

corresponds the following permutation of the set of possible observations
{H , T}3:

HHH → 𝜋(HHH ) =

HHH

HHT → 𝜋(HHT ) =

THH

HTH → 𝜋(HTH ) =

HTH

HTT → 𝜋(HTT ) =

TTH

THH → 𝜋(THH ) =

HHT

THT → 𝜋(THT ) =

THT

TTH → 𝜋(TTH ) =

HTT

TTT → 𝜋(TTT ) =

TTT

,

and we will also denote this permutation by 𝜋.
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Running example: invariant atoms

The invariant atoms are

[HHH ] = {HHH}

mH = 3 and mT = 0

[HHT ] = [HTH ] = [THH ] = {HHT , HTH , THH}

mH = 2 and mT = 1

[HTT ] = [THT ] = [TTH ] = {HTT , THT , TTH}

mH = 1 and mT = 2

[TTT ] = {TTT}

mH = 0 and mT = 3

so there are four invariant atoms.
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Running example: invariant atoms

The invariant atoms are

[HHH ] = {HHH} mH = 3 and mT = 0
[HHT ] = [HTH ] = [THH ] = {HHT , HTH , THH} mH = 2 and mT = 1
[HTT ] = [THT ] = [TTH ] = {HTT , THT , TTH} mH = 1 and mT = 2
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so there are four invariant atoms.



Counting
The invariant atoms are completely determined by their count vectors
m = (mH , mH ).

C : 𝒳 n → 𝒩n

with

C (x)H = |{k : xk = H}| = number of heads in the sequence x
C (x)T = |{k : xk = T}| = number of tails in the sequence x

and
𝒩n := {(mH , mT ) ∈ N2

0 : mH + mT = n}.

All elements of an atom [x] have the same count vector m = C (x), and
are completely determined by it:

[x] = {y ∈ 𝒳 n : C (y) = C (x)}

so we also use the notation [m].



Counting

The number of elements in this atom is equal to the number of possible
permutations of x, and therefore given by

|[m]| =
(︃

n
mH mT

)︃
=
(︃

n
mH

)︃
= n!

mH !mT ! .



Running example: counting
The invariant atoms are

[(3, 0)] = {HHH} has
(︃

3
3

)︃
= 1 element

[(2, 1)] = {HHT , HTH , THH} has
(︃

3
2

)︃
= 3 elements

[(1, 2)] = {HTT , THT , TTH} has
(︃

3
1

)︃
= 3 elements

[(0, 3)] = {TTT} has
(︃

3
0

)︃
= 1 element

and the set of invariant atoms is in a one-to-one correspondence with the
set of count vectors

𝒩3 = {(3, 0), (2, 1), (1, 2), (0, 3)}.



The projection operator

What are, in this case, the projection operator inv𝒫n and the related
uniform average expectation operator U?

U (f |m) = 1(︃
n
m

)︃ ∑︁
y∈[m]

f (y)

= Hy(f |m).

This is the expectation operator associated with the hypergeometric
distribution:

Independently taking balls, without replacement, from an urn whose
composition is determined by the count vector m; so there are in total n
balls, mH of which are of type ‘heads’ and mT of which of type ‘tails’.
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Finite exchangeability representation theorem

We call a lower prevision P on the sequences in 𝒳 n exchangeable if it is
strongly invariant with respect to the permutations in 𝒫n .

Our permutation invariance representation theorem now turns into Bruno
de Finetti’s Representation Theorem for finite exchangeable sequences.

Theorem (de Finetti’s Finite Representation Theorem)
A coherent lower prevision Pn on ℒ(𝒳 n) is exchangeable if and only if
there is some coherent count lower prevision Qn on ℒ(𝒩n) such that
Pn = Qn ∘ Hy.



Finite exchangeability representation theorem

ℒ(𝒳 n) ℒ𝒫n (𝒳 n)

R ℒ(𝒩n)

Qn ∘ Hy = Pn

inv𝒫n

Qn

Hy



Running example: inference
What can we say about the probability that in a sequence of three
exchangeable coin flips, heads is followed by tails?

A = {HTH , HTT , THT , HHT}.

Hy(IA|(3, 0)) =

IA(HHH ) = 0

Hy(IA|(2, 1)) =

1
3
(︁
IA(HHT ) + IA(HTH ) + IA(THH )

)︁
= 2

3

Hy(IA|(1, 2)) =

1
3
(︁
IA(TTH ) + IA(THT ) + IA(HTT )

)︁
= 2

3

Hy(IA|(0, 3)) =

IA(TTT ) = 0

.

We only know that the sequence is exchangeable, so the representing lower
prevision is Q3 = min, and it follows from the representation theorem that

P3(A) = min Hy(IA) = min
{︁

0,
2
3
}︁

= 0

P3(A) = max Hy(IA) = max
{︁

0,
2
3
}︁

= 2
3 .
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Infinite exchangeability

Let us now consider an infinite sequence X1, X2, . . . , Xn . . . which our
subject assumes to be exchangeable, which means that all its finite
subsequences are assumed to be exchangeable.

In effect, this means that all the finite sequences

X1, X2, . . . , Xn for all n ∈ N

are assumed to be exchangeable.



Finite exchangeability representation theorem

For all n ∈ N:

ℒ(𝒳 n) ℒ𝒫n (𝒳 n)

R ℒ(𝒩n)

Qn ∘ Hy = Pn

inv𝒫n

Qn

Hy



Binomial expectations and Bernstein polynomials

Consider flipping the same coin independently n times, where the
probability of heads on each coin flip is 𝜃 ∈ [0, 1].

The probability of observing a sequence with count vector m ∈ 𝒩n is

Bm(𝜃) =
(︃

n
mH

)︃
𝜃mH (1 − 𝜃)mT .

Bm is a polynomial on [0, 1] of degree n, called a Bernstein basis
polynomial of degree n.

For a gamble g ∈ ℒ(𝒩n) on the counts m, its binomial expectation is

Mn(g|𝜃) =
∑︁

m∈𝒩n

g(m)Bm(𝜃),

a polynomial of degree at most n on [0, 1].
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Running example: Bernstein polynomials

The probability of observing mH heads and mT tails in a run of n = 3
coin flips, is

B(3,0)(𝜃) =

(︃
3
3

)︃
𝜃3(1 − 𝜃)0 = 𝜃3

B(2,1)(𝜃) =

(︃
3
2

)︃
𝜃2(1 − 𝜃)1 = 3𝜃2(1 − 𝜃) = 3𝜃2 − 3𝜃3

B(1,2)(𝜃) =

(︃
3
1

)︃
𝜃1(1 − 𝜃)2 = 3𝜃(1 − 2𝜃 + 𝜃2) = 3𝜃 − 6𝜃2 + 3𝜃3

B(0,3)(𝜃) =

(︃
3
0

)︃
𝜃0(1 − 𝜃)3 = (1 − 𝜃)3 = 1 − 3𝜃 + 3𝜃2 − 𝜃3,

which are all Bernstein basis polynomials of degree 3.
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Running example: Bernstein polynomials

Any polynomial of degree 3

p(𝜃) = a + b𝜃 + c𝜃2 + d𝜃3

can be written uniquely as a linear combination of these basis polynomials:

p = (a + b + c + d)B(3,0) + (a + 2b
3 + c

3)B(2,1) + (a + b
3)B(1,2) + aB(0,3).



Using polynomials rather than counts

For general n, the Bernstein basis polynomials Bm , m ∈ 𝒩n of degree n
constitute a basis for the linear space 𝒱n([0, 1]) of all polynomials of
degree at most n.

The multinomial expectation operator Mn turns any gamble g on the
counts in 𝒩n into a polynomial Mn(g) on [0, 1], where

Mn(g|𝜃) =
∑︁

m∈𝒩n

g(m)Bm(𝜃).

Because the Bernstein basis polynomials of degree n constitute a basis for
all polynomials of degree at most n, the map Mn is one-to-one—a linear
isomorphism, which preserves dimension.
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Infinite exchangeability representation theorem

ℒ(𝒳 n) ℒ(𝒩n)

R 𝒱n([0, 1])

Rn ∘ Mn ∘ Hy = Qn ∘ Hy = Pn
Qn

Hy

Mn

Rn



Infinite exchangeability representation theorem

ℒ(𝒳 n) ℒ(𝒩n)

R 𝒱n([0, 1]) 𝒱([0, 1])

Pn
Qn

Hy

Mn

Rn id

R



Infinite exchangeability representation theorem

Theorem (de Finetti’s Infinite Representation Theorem)
A coherent lower prevision P on

⋃︀
n∈N ℒ(𝒳 n) is exchangeable if and only

if there is some coherent frequency lower prevision R on 𝒱([0, 1]) such
that P = R ∘ Hy ∘ Mn.



Running example: inference
We want to find out about the probability of the event A—‘heads followed
by tails in a run of three coin flips’—using the polynomial representation.
Recall that, with g = Hy(IA),

g(3, 0) = 0 and g(2, 1) = 2
3 and g(1, 2) = 2

3 and g(0, 3) = 0

and therefore the count gamble g corresponds to the polynomial

Mn(g|𝜃) =

2
3B(2,1)(𝜃)+2

3B(1,2)(𝜃) = 2
3[3𝜃2(1−𝜃)+3𝜃(1−𝜃)2] = 2𝜃(1−𝜃).

Because infinite exchangeability is all we have assumed, R = inf, and
therefore

P(A) = inf
𝜃∈[0,1]

2𝜃(1 − 𝜃) = 0 and P(A) = sup
𝜃∈[0,1]

2𝜃(1 − 𝜃) = 1
2 .
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