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Characterizing Coherence,
Correcting Incoherence

Erik Quaeghebeur
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Characterizing Coherence, Correcting Incoherence
I WANT YOU

to crank out COHERENCE
CHARACTERIZATIONS

1. Context
Basic setup:
• Finite possibility space Ω

• Finite set of gambles 𝒦 on Ω

• Lower previsions P on 𝒦
Matrix notation:
• ⋃︀Ω ⋃︀-by-⋃︀𝒦⋃︀ matrix K with

gambles as columns
• the rows of K (columns of K⊺)

are the degenerate previsions
• the set 𝒮 of matrices S obtained

from the identity matrix I by
changing at most one 1 to −1

• all-one (zero) column vector 1 (0)

2. Goals
Given K, find a non-redundant H-
representations for the set of all P
A. that avoid sure loss ()︀ΛA αA⌈︀),
B. that avoid sure loss and for

which P ≥min ()︀ΛB αB⌈︀),
C. that are coherent ()︀ΛC αC⌈︀).

7. Experiments
The sparsity σ is the fraction of
zero components in K.

Procedure C1 is exponential
in 1 − σ and ∼linear in ⋃︀Ω ⋃︀:
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. . . and (at least) exponential in ⋃︀𝒦⋃︀:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
10−3
10−2
10−1
100
101
102
103

⋃︀𝒦⋃︀ = 3

⋃︀𝒦⋃︀ = 4
⋃︀𝒦⋃︀ = 6

⋃︀𝒦⋃︀ = 8
⋃︀𝒦⋃︀ = 9

⋃︀𝒦⋃︀ = 12

σ

[s]

⋃︀Ω ⋃︀ = 6

3. Goal A: Characterizing ASL
Based on the existence of a dominating linear prevision:

A1. ∃µI,νI ≥ 0 ∶
P =K⊺

µI− IνI ∧ 1⊺µI = 1
⌊︀K⊺ −I

1⊺ 0⊺}︀ )︀ΛA αA⌈︀EN, RR

A2. ∃µI ≥ 0 ∶
P ≤K⊺

µI ∧ 1⊺µI = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

I −K⊺ 0
−I 0
1⊺ 1
−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛA αA⌈︀PJP, RR

4. Goal B: Characterizing ASL ≥≥≥ min
B1. Starting from )︀ΛA αA⌈︀: ⌊︀ ΛA αA

−I −min}︀ )︀ΛB αB⌈︀RR

5. Goal C: Characterizing coherence
Based on the existence of S-dominating linear previsions:

C1. Analogous to A1 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS,νS ≥ 0 ∶
P =K⊺

µS−SνS ∧ 1⊺µS = 1
⌊︀K⊺ −S

1⊺ 0⊺}︀ )︀ΛC αC⌈︀EN, ISS∈𝒮, RR

C2. Analogous to A2 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS ≥ 0 ∶
SP ≤ SK⊺

µS ∧ 1⊺µS = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

S −SK⊺ 0
−I 0
1⊺ 1

−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, ISS∈𝒮, RR

=∶ )︀AS,P AS,µS b0⌈︀C3. Block matrix form of C2:

)︀AP Aµ b⌈︀ ∶=

⎨⎝⎝⎝⎝⎝⎝⎝⎪

AI,P AI,µI b0
⋮ ⋱ ⋮

AS,P AS,µS b0
⋮ ⋱ ⋮

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, RR

6. Illustrations of Procedure C1
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I WANT YOU

to ERADICATE
INCOHERENCE utterly

1. Context & Goal
Given: incoherent lower prevision P.
Goal: Find a coherent correction to it.

2. Bring within bounds
If P f ∉ (︀min f ,max f ⌋︀ for some f in 𝒦, it is
out of bounds. To bring it within bounds:

BP f ∶=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

min f P f ≤min f ,
max f P f ≥max f ,
P f otherwise.

P

BP QBQ

lower previsions
out of bounds

3. Downward correction
As the downward correction of P we
take the lower envelope of the maximal
coherent dominated lower previsions
(proposed earlier by Pelessoni & Vicig, following

Weichselberger), so the nadir point DP of
the MOLP (cf. C)

(†)

maximize Q,

subject to ΛCQ ≤ αC

Q ≤ P
or the MOLP (cf. C3)

(‡)

maximize Q,

subject to AQQ+Aµµ ≤ b
Q ≤ P.

Some desirable properties:
• It is the maximal neutral correction

(‘no component tradeoffs’).
• The imprecision of the correction is

nondecreasing with incoherence.
P

DP

Q

DQ

DP

P

dominated
lower previsions

extreme
coherent dominated

lower prevision

For the future: Can the computation be
simplified for special classes of P?

4. Experiments
With the M3-solver we used, computa-
tion appears exponential in ⋃︀𝒦⋃︀; using
pre-computed constraints (†) is more
efficient than not (‡):
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DP via (†)

DP via (‡)

⋃︀Ω ⋃︀ = 5, σ ≈ 1⇑2

We expect other solvers and certainly
direct M2-solvers to perform more
efficiently, but could not test any yet.

5. Upward correction
The standard upward correction of P
is its natural extension EP, the unique
minimal pointwise dominating co-
herent lower prevision, so the the
solution to the MOLP (cf. C)

minimize EP,

subject to ΛCEP ≤ αC

EP ≥ P
or the MOLP (cf. C3)

(*)

minimize EP,

subject to AEPEP+Aµµ ≤ b
EP ≥ P.

• The problem becomes a plain LP by
using the objective ∑g∈𝒦EPg.

• (*) decomposes into a classical for-
mulation of natural extension.

P
EP Q

dominating lower previsions

no natural extension
in case of sure loss

1. Representations
Any convex polyhedron in Rn can be
described in two ways:
H-representation (intersection of half-spaces)

)︀A b⌈︀ ∶= {x ∈Rn ∶ Ax ≤ b}
constraint matrix in Rk×n

constraint vector in Rk

V-representation (convex hull of points and rays)

⌊︀Vw}︀ ∶= {x ∈Rn ∶ x =V µ ∧ µ ≥ 0 ∧ w⊺
µ = 1}

vector matrix in Rn×`
vector in R`

vector in (R`)≥0 with components defining
points (≠ 0) and rays (= 0)

2. Illustration
Here n = 2, k = 3, and ` = 4.

constraint

redundant
constraint

redundant point

extreme
ray

vertex

I WANT YOU

to juggle POLYHEDRA
like there’s no tomorrow

3. Tasks
RR. Removing redundancy: if j is the

numberof non-redundant con-
straints (or vectors), this requires
solving k (or `) linear programming
problems of size n× j

EN. Moving between H- and V-represent-
ations: done using vertex/facet enu-
meration algorithms; polynomial in
n, k, and `.

PJ. Projection on a lower-dimensional
space: easy with V-representations,
hard with H-representations.

IS. Intersection: easy with H-represent-
ations, hard with V-representations.

1. Formalization
Any multi-objective linear program
(MOLP) can be put in the following
form:

maximize y =Cx,
subject to Ax ≤ b and x ≥ 0

objective
vector in Rm

objective
matrix in Rm×n

optimization
vector in Rn

constraint
matrix in Rk×n

constraint
vector in Rk

3. Tasks
Main computational tasks in non-
decreasing order of complexity:
M1. Finding ŷ.
M2. Finding y̌.
M3. Finding ext𝒴∗

and characterizing 𝒴∗.
M4. Finding ext𝒳 ∗.
M5. Characterizing 𝒳 ∗.

2. Illustration
Here m = n = 2 and k = 4.

x1

x2

𝒳

𝒳 ∗

C1

C2

y1

y2

𝒴

𝒴∗
ŷ

y̌

feasible optimization vectors
{x ∈Rn ∶ Ax ≤ b ∧ x ≥ 0}

C-undominated optimization
vectors {x ∈ 𝒳 ∶ (∀z ∈ 𝒳 ∶Cx ⇑<Cz)}
with vertices ext𝒳 ∗

undominated objective vectors
{Cx ∶ x ∈ 𝒳 ∗} with vertices ext𝒴∗

ideal point, with ŷi =max{yi ∶ y ∈ 𝒴}

nadir point, with
y̌i =min{yi ∶ y ∈ 𝒴∗}

feasible objective vectors {Cx ∶ x ∈ 𝒳}

I WANT YOU

to grok MULTI-OBJECTIVE
LINEAR PROGRAMMING

SYSTeMS Research Group
Ghent University Erik Quaeghebeur Decision Support Systems Group

Utrecht University

Coherence
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procedures

Incoherence
correction
procedures

Polytope
theory

Multi-
objective
linear
programming



Characterizing Coherence, Correcting Incoherence
I WANT YOU

to crank out COHERENCE
CHARACTERIZATIONS

1. Context
Basic setup:
• Finite possibility space Ω

• Finite set of gambles 𝒦 on Ω

• Lower previsions P on 𝒦
Matrix notation:
• ⋃︀Ω ⋃︀-by-⋃︀𝒦⋃︀ matrix K with

gambles as columns
• the rows of K (columns of K⊺)

are the degenerate previsions
• the set 𝒮 of matrices S obtained

from the identity matrix I by
changing at most one 1 to −1

• all-one (zero) column vector 1 (0)

2. Goals
Given K, find a non-redundant H-
representations for the set of all P
A. that avoid sure loss ()︀ΛA αA⌈︀),
B. that avoid sure loss and for

which P ≥min ()︀ΛB αB⌈︀),
C. that are coherent ()︀ΛC αC⌈︀).

7. Experiments
The sparsity σ is the fraction of
zero components in K.

Procedure C1 is exponential
in 1 − σ and ∼linear in ⋃︀Ω ⋃︀:
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3. Goal A: Characterizing ASL
Based on the existence of a dominating linear prevision:

A1. ∃µI,νI ≥ 0 ∶
P =K⊺

µI− IνI ∧ 1⊺µI = 1
⌊︀K⊺ −I

1⊺ 0⊺}︀ )︀ΛA αA⌈︀EN, RR

A2. ∃µI ≥ 0 ∶
P ≤K⊺

µI ∧ 1⊺µI = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

I −K⊺ 0
−I 0
1⊺ 1
−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛA αA⌈︀PJP, RR

4. Goal B: Characterizing ASL ≥≥≥ min
B1. Starting from )︀ΛA αA⌈︀: ⌊︀ ΛA αA

−I −min}︀ )︀ΛB αB⌈︀RR

5. Goal C: Characterizing coherence
Based on the existence of S-dominating linear previsions:

C1. Analogous to A1 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS,νS ≥ 0 ∶
P =K⊺

µS−SνS ∧ 1⊺µS = 1
⌊︀K⊺ −S

1⊺ 0⊺}︀ )︀ΛC αC⌈︀EN, ISS∈𝒮, RR

C2. Analogous to A2 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS ≥ 0 ∶
SP ≤ SK⊺

µS ∧ 1⊺µS = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

S −SK⊺ 0
−I 0
1⊺ 1

−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, ISS∈𝒮, RR

=∶ )︀AS,P AS,µS b0⌈︀C3. Block matrix form of C2:

)︀AP Aµ b⌈︀ ∶=

⎨⎝⎝⎝⎝⎝⎝⎝⎪

AI,P AI,µI b0
⋮ ⋱ ⋮

AS,P AS,µS b0
⋮ ⋱ ⋮

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, RR

6. Illustrations of Procedure C1
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each S in 𝒮
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I WANT YOU

to ERADICATE
INCOHERENCE utterly

1. Context & Goal
Given: incoherent lower prevision P.
Goal: Find a coherent correction to it.

2. Bring within bounds
If P f ∉ (︀min f ,max f ⌋︀ for some f in 𝒦, it is
out of bounds. To bring it within bounds:

BP f ∶=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

min f P f ≤min f ,
max f P f ≥max f ,
P f otherwise.

P

BP QBQ

lower previsions
out of bounds

3. Downward correction
As the downward correction of P we
take the lower envelope of the maximal
coherent dominated lower previsions
(proposed earlier by Pelessoni & Vicig, following

Weichselberger), so the nadir point DP of
the MOLP (cf. C)

(†)

maximize Q,

subject to ΛCQ ≤ αC

Q ≤ P
or the MOLP (cf. C3)

(‡)

maximize Q,

subject to AQQ+Aµµ ≤ b
Q ≤ P.

Some desirable properties:
• It is the maximal neutral correction

(‘no component tradeoffs’).
• The imprecision of the correction is

nondecreasing with incoherence.
P

DP

Q

DQ

DP

P

dominated
lower previsions

extreme
coherent dominated

lower prevision

For the future: Can the computation be
simplified for special classes of P?

4. Experiments
With the M3-solver we used, computa-
tion appears exponential in ⋃︀𝒦⋃︀; using
pre-computed constraints (†) is more
efficient than not (‡):
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⋃︀𝒦⋃︀

[s]

DP via (†)

DP via (‡)

⋃︀Ω ⋃︀ = 5, σ ≈ 1⇑2

We expect other solvers and certainly
direct M2-solvers to perform more
efficiently, but could not test any yet.

5. Upward correction
The standard upward correction of P
is its natural extension EP, the unique
minimal pointwise dominating co-
herent lower prevision, so the the
solution to the MOLP (cf. C)

minimize EP,

subject to ΛCEP ≤ αC

EP ≥ P
or the MOLP (cf. C3)

(*)

minimize EP,

subject to AEPEP+Aµµ ≤ b
EP ≥ P.

• The problem becomes a plain LP by
using the objective ∑g∈𝒦EPg.

• (*) decomposes into a classical for-
mulation of natural extension.

P
EP Q

dominating lower previsions

no natural extension
in case of sure loss

1. Representations
Any convex polyhedron in Rn can be
described in two ways:
H-representation (intersection of half-spaces)

)︀A b⌈︀ ∶= {x ∈Rn ∶ Ax ≤ b}
constraint matrix in Rk×n

constraint vector in Rk

V-representation (convex hull of points and rays)

⌊︀Vw}︀ ∶= {x ∈Rn ∶ x =V µ ∧ µ ≥ 0 ∧ w⊺
µ = 1}

vector matrix in Rn×`
vector in R`

vector in (R`)≥0 with components defining
points (≠ 0) and rays (= 0)

2. Illustration
Here n = 2, k = 3, and ` = 4.

constraint

redundant
constraint

redundant point

extreme
ray

vertex

I WANT YOU

to juggle POLYHEDRA
like there’s no tomorrow

3. Tasks
RR. Removing redundancy: if j is the

numberof non-redundant con-
straints (or vectors), this requires
solving k (or `) linear programming
problems of size n× j

EN. Moving between H- and V-represent-
ations: done using vertex/facet enu-
meration algorithms; polynomial in
n, k, and `.

PJ. Projection on a lower-dimensional
space: easy with V-representations,
hard with H-representations.

IS. Intersection: easy with H-represent-
ations, hard with V-representations.

1. Formalization
Any multi-objective linear program
(MOLP) can be put in the following
form:

maximize y =Cx,
subject to Ax ≤ b and x ≥ 0

objective
vector in Rm

objective
matrix in Rm×n

optimization
vector in Rn

constraint
matrix in Rk×n

constraint
vector in Rk

3. Tasks
Main computational tasks in non-
decreasing order of complexity:
M1. Finding ŷ.
M2. Finding y̌.
M3. Finding ext𝒴∗

and characterizing 𝒴∗.
M4. Finding ext𝒳 ∗.
M5. Characterizing 𝒳 ∗.

2. Illustration
Here m = n = 2 and k = 4.

x1

x2

𝒳

𝒳 ∗

C1

C2

y1

y2

𝒴

𝒴∗
ŷ

y̌

feasible optimization vectors
{x ∈Rn ∶ Ax ≤ b ∧ x ≥ 0}

C-undominated optimization
vectors {x ∈ 𝒳 ∶ (∀z ∈ 𝒳 ∶Cx ⇑<Cz)}
with vertices ext𝒳 ∗

undominated objective vectors
{Cx ∶ x ∈ 𝒳 ∗} with vertices ext𝒴∗

ideal point, with ŷi =max{yi ∶ y ∈ 𝒴}

nadir point, with
y̌i =min{yi ∶ y ∈ 𝒴∗}

feasible objective vectors {Cx ∶ x ∈ 𝒳}
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Characterizing Coherence, Correcting Incoherence
I WANT YOU

to crank out COHERENCE
CHARACTERIZATIONS

1. Context
Basic setup:
• Finite possibility space Ω

• Finite set of gambles 𝒦 on Ω

• Lower previsions P on 𝒦
Matrix notation:
• ⋃︀Ω ⋃︀-by-⋃︀𝒦⋃︀ matrix K with

gambles as columns
• the rows of K (columns of K⊺)

are the degenerate previsions
• the set 𝒮 of matrices S obtained

from the identity matrix I by
changing at most one 1 to −1

• all-one (zero) column vector 1 (0)

2. Goals
Given K, find a non-redundant H-
representations for the set of all P
A. that avoid sure loss ()︀ΛA αA⌈︀),
B. that avoid sure loss and for

which P ≥min ()︀ΛB αB⌈︀),
C. that are coherent ()︀ΛC αC⌈︀).

7. Experiments
The sparsity σ is the fraction of
zero components in K.

Procedure C1 is exponential
in 1 − σ and ∼linear in ⋃︀Ω ⋃︀:
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σ

[s]

⋃︀𝒦⋃︀ = 5

. . . and (at least) exponential in ⋃︀𝒦⋃︀:
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σ
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⋃︀Ω ⋃︀ = 6

3. Goal A: Characterizing ASL
Based on the existence of a dominating linear prevision:

A1. ∃µI,νI ≥ 0 ∶
P =K⊺

µI− IνI ∧ 1⊺µI = 1
⌊︀K⊺ −I

1⊺ 0⊺}︀ )︀ΛA αA⌈︀EN, RR

A2. ∃µI ≥ 0 ∶
P ≤K⊺

µI ∧ 1⊺µI = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

I −K⊺ 0
−I 0
1⊺ 1
−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛA αA⌈︀PJP, RR

4. Goal B: Characterizing ASL ≥≥≥ min
B1. Starting from )︀ΛA αA⌈︀: ⌊︀ ΛA αA

−I −min}︀ )︀ΛB αB⌈︀RR

5. Goal C: Characterizing coherence
Based on the existence of S-dominating linear previsions:

C1. Analogous to A1 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS,νS ≥ 0 ∶
P =K⊺

µS−SνS ∧ 1⊺µS = 1
⌊︀K⊺ −S

1⊺ 0⊺}︀ )︀ΛC αC⌈︀EN, ISS∈𝒮, RR

C2. Analogous to A2 & intersection over all S in 𝒮:

∀S ∈ 𝒮 ∶ ∃µS ≥ 0 ∶
SP ≤ SK⊺

µS ∧ 1⊺µS = 1

⎨⎝⎝⎝⎝⎝⎝⎝⎪

S −SK⊺ 0
−I 0
1⊺ 1

−1⊺ −1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, ISS∈𝒮, RR

=∶ )︀AS,P AS,µS b0⌈︀C3. Block matrix form of C2:

)︀AP Aµ b⌈︀ ∶=

⎨⎝⎝⎝⎝⎝⎝⎝⎪

AI,P AI,µI b0
⋮ ⋱ ⋮

AS,P AS,µS b0
⋮ ⋱ ⋮

⎬⎠⎠⎠⎠⎠⎠⎠⎮

)︀ΛC αC⌈︀PJP, RR

6. Illustrations of Procedure C1
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facet enumerate
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I WANT YOU

to ERADICATE
INCOHERENCE utterly

1. Context & Goal
Given: incoherent lower prevision P.
Goal: Find a coherent correction to it.

2. Bring within bounds
If P f ∉ (︀min f ,max f ⌋︀ for some f in 𝒦, it is
out of bounds. To bring it within bounds:

BP f ∶=

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

min f P f ≤min f ,
max f P f ≥max f ,
P f otherwise.

P

BP QBQ

lower previsions
out of bounds

3. Downward correction
As the downward correction of P we
take the lower envelope of the maximal
coherent dominated lower previsions
(proposed earlier by Pelessoni & Vicig, following

Weichselberger), so the nadir point DP of
the MOLP (cf. C)

(†)

maximize Q,

subject to ΛCQ ≤ αC

Q ≤ P
or the MOLP (cf. C3)

(‡)

maximize Q,

subject to AQQ+Aµµ ≤ b
Q ≤ P.

Some desirable properties:
• It is the maximal neutral correction

(‘no component tradeoffs’).
• The imprecision of the correction is

nondecreasing with incoherence.
P

DP

Q

DQ

DP

P

dominated
lower previsions

extreme
coherent dominated

lower prevision

For the future: Can the computation be
simplified for special classes of P?

4. Experiments
With the M3-solver we used, computa-
tion appears exponential in ⋃︀𝒦⋃︀; using
pre-computed constraints (†) is more
efficient than not (‡):
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[s]

DP via (†)

DP via (‡)

⋃︀Ω ⋃︀ = 5, σ ≈ 1⇑2

We expect other solvers and certainly
direct M2-solvers to perform more
efficiently, but could not test any yet.

5. Upward correction
The standard upward correction of P
is its natural extension EP, the unique
minimal pointwise dominating co-
herent lower prevision, so the the
solution to the MOLP (cf. C)

minimize EP,

subject to ΛCEP ≤ αC

EP ≥ P
or the MOLP (cf. C3)

(*)

minimize EP,

subject to AEPEP+Aµµ ≤ b
EP ≥ P.

• The problem becomes a plain LP by
using the objective ∑g∈𝒦EPg.

• (*) decomposes into a classical for-
mulation of natural extension.

P
EP Q

dominating lower previsions

no natural extension
in case of sure loss

1. Representations
Any convex polyhedron in Rn can be
described in two ways:
H-representation (intersection of half-spaces)

)︀A b⌈︀ ∶= {x ∈Rn ∶ Ax ≤ b}
constraint matrix in Rk×n

constraint vector in Rk

V-representation (convex hull of points and rays)

⌊︀Vw}︀ ∶= {x ∈Rn ∶ x =V µ ∧ µ ≥ 0 ∧ w⊺
µ = 1}

vector matrix in Rn×`
vector in R`

vector in (R`)≥0 with components defining
points (≠ 0) and rays (= 0)

2. Illustration
Here n = 2, k = 3, and ` = 4.

constraint

redundant
constraint

redundant point

extreme
ray

vertex

I WANT YOU

to juggle POLYHEDRA
like there’s no tomorrow

3. Tasks
RR. Removing redundancy: if j is the

numberof non-redundant con-
straints (or vectors), this requires
solving k (or `) linear programming
problems of size n× j

EN. Moving between H- and V-represent-
ations: done using vertex/facet enu-
meration algorithms; polynomial in
n, k, and `.

PJ. Projection on a lower-dimensional
space: easy with V-representations,
hard with H-representations.

IS. Intersection: easy with H-represent-
ations, hard with V-representations.

1. Formalization
Any multi-objective linear program
(MOLP) can be put in the following
form:

maximize y =Cx,
subject to Ax ≤ b and x ≥ 0

objective
vector in Rm

objective
matrix in Rm×n

optimization
vector in Rn

constraint
matrix in Rk×n

constraint
vector in Rk

3. Tasks
Main computational tasks in non-
decreasing order of complexity:
M1. Finding ŷ.
M2. Finding y̌.
M3. Finding ext𝒴∗

and characterizing 𝒴∗.
M4. Finding ext𝒳 ∗.
M5. Characterizing 𝒳 ∗.

2. Illustration
Here m = n = 2 and k = 4.

x1

x2

𝒳

𝒳 ∗

C1

C2

y1

y2

𝒴

𝒴∗
ŷ

y̌

feasible optimization vectors
{x ∈Rn ∶ Ax ≤ b ∧ x ≥ 0}

C-undominated optimization
vectors {x ∈ 𝒳 ∶ (∀z ∈ 𝒳 ∶Cx ⇑<Cz)}
with vertices ext𝒳 ∗

undominated objective vectors
{Cx ∶ x ∈ 𝒳 ∗} with vertices ext𝒴∗

ideal point, with ŷi =max{yi ∶ y ∈ 𝒴}

nadir point, with
y̌i =min{yi ∶ y ∈ 𝒴∗}

feasible objective vectors {Cx ∶ x ∈ 𝒳}
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