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Avoiding sure loss
▸ Finite possibility space Ω ,
▸ Linear vector space L ∶= [Ω →R],
▸ Finite set of gambles K ⋐L,
▸ Lower prevision P ∈ [K→R],
▸ Set of marginal gambles A ∶= {h−Ph ∶ h ∈ K}.

find λ ∈RA,
subject to ∑g∈Aλg ⋅g ⋖ 0 and λ ≥ 0.

find λ ∈RA,
subject to ∑g∈Aλg ⋅g ≤ −1 and λ ≥ 0.

▸ Indicator function 1B of an event B ⊆Ω ; 1ω ∶= 1{ω} for ω ∈Ω .

find (λ ,µ) ∈RA×RΩ ,

subject to ∑g∈Aλg ⋅g+∑ω∈Ω µω ⋅1ω = 0 and λ ≥ 0 and µ ≥ 1.
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Natural extension

▸ Set of almost desirable gambles A⋐L,
▸ Gamble of interest f ∈ L.

maximize α ∈R,
subject to f −α ≥∑g∈Aλg ⋅g and λ ≥ 0.

maximize α ∈R,
subject to ∑g∈Aλg ⋅g+∑ω∈Ω µω ⋅1ω +α = f and λ ≥ 0 and µ ≥ 0.
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Avoiding partial loss
▸ Set of (finite) events Ω

∗,
▸ Finite set of (gamble, event)-pairs N ⋐L×Ω

∗,
▸ Conditional lower prevision P ∈ [N →R],
▸ Set of (conditional marginal gamble, event)-pairs

B ∶= {([h−P(h∣B)] ⋅1B,B) ∶ (h,B) ∈ N}.

find (λ ,ε) ∈RB ×RB,
subject to ∑(g,B)∈Bλg,B ⋅ [g+εg,B ⋅1B] ≤ 0 and λ > 0 and ε ⋗ 0.

find (λ ,ν ,µ) ∈RB ×(RB ×RB)×RΩ ,

subject to ∑(g,B)∈Bλg,B ⋅ [νg,B,g ⋅g+νg,B,B ⋅1B]+∑ω∈Ω µω ⋅1ω = 0

and to λ > 0 and ν ⋗ 0 and µ ≥ 0.
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Conditional natural extension
▸ Set of (conditional almost desirable gamble, event)-pairs

B ⋐ L×Ω
∗,

▸ (Gamble, event)-pair of interest (f ,C) ∈ L×Ω
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Representation of general cones

Represent a finitary general cone as a convex closure of a finite number
of finitary open cones.

R ∶= {∑D∈RλD ⋅∑g∈D νD,g ⋅g ∶ λ > 0,ν ⋗ 0} for R⋐L∗.

Definition
An ajar cone C is finitary iff its closure clC is finitary and the intersection
of C with each of clC’s facets is a finitary (open, closed, or ajar) cone.

Theorem
R is a finitary general cone for every R⋐L∗.
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Representation of general cones: illustration
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Formulation of the general problem

Given a general cone represented by R⋐L∗ and a gamble h ∈ L, we
wish to

find (λ ,ν) ∈RR×⨉D∈RRD

or maximize an affine function of µ ∶= (λD ⋅νD,g ∶ D ∈ R,g ∈ D),

subject to ∑D∈RλD ⋅∑g∈D νD,g ⋅g = h

and to λ > 0 and ν ⋗ 0

and to possibly additional
linear constraints on µ.
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WLOG h = 0 in feasibility problem
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Blunt topological closure
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Topological interior
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The CONEstrip algorithm
We can solve the general feasibility problem with arbitrary R⋐L∗ and
h ∶= 0 with the following algorithm:

1. maximize ∑D∈R τD,
subject to ∑D∈R∑g∈D µD,g ⋅g = 0 and µ ≥ 0 and possibly. . .

and to 0 ≤ τ ≤ 1 and ∀D ∈R ∶ τD ≤ µD and ∑D∈R τD ≥ 1.

2. a. If there is no feasible solution, then the problem is infeasible.
b. Otherwise set S ∶= {D ∈R ∶ τD > 0}; τ is equal to 1 on S:

i. If ∀D ∈R∖S ∶ µD = 0, then the general problem is feasible.
ii. Otherwise, return to step 1 with R replaced by S.

Proposition
The claims made in the CONEstrip algorithm are veracious and it
terminates after at most ∣R∣−1 iterations.
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(It. 1) S =R, τ{g2} = τ{g1,g2} = τ{−g1} = 1, and necessarily µ{g3,g5,g10},g10

> 0,
(It. 2) S = {{g2},{g1,g2},{−g1}}, infeasible.



Optimization problems

We can solve the general optimization problem with arbitrary R⋐L∗
and h ∈ L with the following algorithm:

1. Apply the CONEstrip algorithm to R∪{−h} with µ{−h},−h ≥ 1 as an
additional constraint; if feasible, continue to the next step with the
terminal set S.

2. maximize an affine function of µ,

subject to ∑D∈S∑g∈D µD,g ⋅g = h

and to µ ≥ 0 and possibly. . .



Conclusions, thoughts & acknowledgments

▸ We now have an efficient, polynomial time algorithm for
consistency checking and inference in uncertainty modeling
frameworks using general cones.

▸ Integrating CONEstrip with a specific linear programming solver
might allow for a practical increase in efficiency.

▸ What about uncertainty modeling frameworks using general
bounded polytopes? Such polytopes can be seen as intersections
of a general cone and a hyperplane.

▸ For useful discussion, I thank Dirk Aeyels, Gert de Cooman,
Nathan Huntley, and Filip Hermans.
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