The CONEstrip Algorithm

Erik Quaeghebeur

SYSTeMS Research Group, Ghent University, Belgium Erik.Quaeghebeur@UGent.be

- Finite possibility space Ω ,
- Linear vector space $\mathcal{L} \coloneqq [\Omega \to \mathbb{R}]$,
- Finite set of gambles $\mathcal{K} \subseteq \mathcal{L}$,
- Lower prevision $\underline{P} \in [\mathcal{K} \to \mathbb{R}]$,
- Set of marginal gambles $\mathcal{A} \coloneqq \{h \underline{P}h : h \in \mathcal{K}\}.$

- Finite possibility space Ω ,
- Linear vector space $\mathcal{L} \coloneqq [\Omega \to \mathbb{R}]$,
- Finite set of gambles $\mathcal{K} \subseteq \mathcal{L}$,
- Lower prevision $\underline{P} \in [\mathcal{K} \to \mathbb{R}]$,
- Set of marginal gambles $\mathcal{A} \coloneqq \{h \underline{P}h : h \in \mathcal{K}\}.$

find $\lambda \in \mathbb{R}^{\mathcal{A}}$,

subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g < 0$ and $\lambda \ge 0$.

- Finite possibility space Ω ,
- Linear vector space $\mathcal{L} \coloneqq [\Omega \to \mathbb{R}]$,
- Finite set of gambles $\mathcal{K} \Subset \mathcal{L}$,
- Lower prevision $\underline{P} \in [\mathcal{K} \to \mathbb{R}]$,
- Set of marginal gambles $\mathcal{A} \coloneqq \{h \underline{P}h : h \in \mathcal{K}\}.$

find $\lambda \in \mathbb{R}^{\mathcal{A}}$,

subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g < 0$ and $\lambda \ge 0$.

find $\lambda \in \mathbb{R}^{\mathcal{A}}$, subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g \leq -1$ and $\lambda \geq 0$.

- Finite possibility space Ω ,
- Linear vector space $\mathcal{L} \coloneqq [\Omega \to \mathbb{R}]$,
- Finite set of gambles $\mathcal{K} \Subset \mathcal{L}$,
- Lower prevision $\underline{P} \in [\mathcal{K} \to \mathbb{R}]$,
- Set of marginal gambles $\mathcal{A} \coloneqq \{h \underline{P}h : h \in \mathcal{K}\}.$

find $\lambda \in \mathbb{R}^{\mathcal{A}}$, subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g < 0$ and $\lambda \ge 0$.

find $\lambda \in \mathbb{R}^{\mathcal{A}}$, subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g \leq -1$ and $\lambda \geq 0$.

• Indicator function 1_B of an event $B \subseteq \Omega$; $1_{\omega} \coloneqq 1_{\{\omega\}}$ for $\omega \in \Omega$.

find $(\lambda, \mu) \in \mathbb{R}^{\mathcal{A}} \times \mathbb{R}^{\Omega}$, subject to $\sum_{g \in \mathcal{A}} \lambda_g \cdot g + \sum_{\omega \in \Omega} \mu_{\omega} \cdot 1_{\omega} = 0$ and $\lambda \ge 0$ and $\mu \ge 1$.

Natural extension

- Set of almost desirable gambles $\mathcal{A} \Subset \mathcal{L}$,
- Gamble of interest $f \in \mathcal{L}$.

Natural extension

- Set of almost desirable gambles $\mathcal{A} \subseteq \mathcal{L}$,
- Gamble of interest $f \in \mathcal{L}$.

maximize $\alpha \in \mathbb{R}$, subject to $f - \alpha \ge \sum_{g \in \mathcal{A}} \lambda_g \cdot g$ and $\lambda \ge 0$.

Natural extension

- Set of almost desirable gambles $\mathcal{A} \subseteq \mathcal{L}$,
- Gamble of interest $f \in \mathcal{L}$.

maximize $\alpha \in \mathbb{R}$, subject to $f - \alpha \ge \sum_{g \in \mathcal{A}} \lambda_g \cdot g$ and $\lambda \ge 0$.

 $\begin{array}{ll} \text{maximize} & \alpha \in \mathbb{R}, \\ \text{subject to} & \sum_{g \in \mathcal{A}} \lambda_g \cdot g + \sum_{\omega \in \Omega} \mu_\omega \cdot 1_\omega + \alpha = f \quad \text{and} \quad \lambda \geq 0 \quad \text{and} \quad \mu \geq 0. \end{array}$

Avoiding partial loss

- Set of (finite) events Ω^{*},
- Finite set of (gamble, event)-pairs $\mathcal{N} \in \mathcal{L} \times \Omega^*$,
- Conditional lower prevision $\underline{P} \in [\mathcal{N} \to \mathbb{R}]$,
- Set of (conditional marginal gamble, event)-pairs

$$\mathcal{B} \coloneqq \left\{ \left(\left[h - \underline{P}(h|B) \right] \cdot \mathbf{1}_B, B \right) : (h, B) \in \mathcal{N} \right\}$$

Avoiding partial loss

- Set of (finite) events Ω^{*},
- Finite set of (gamble, event)-pairs $\mathcal{N} \in \mathcal{L} \times \Omega^*$,
- Conditional lower prevision $\underline{P} \in [\mathcal{N} \to \mathbb{R}]$,
- Set of (conditional marginal gamble, event)-pairs

$$\mathcal{B} \coloneqq \left\{ \left(\left[h - \underline{P}(h|B) \right] \cdot 1_B, B \right) : (h,B) \in \mathcal{N} \right\}$$

find $(\lambda, \varepsilon) \in \mathbb{R}^{\mathcal{B}} \times \mathbb{R}^{\mathcal{B}}$, subject to $\sum_{(g,B)\in\mathcal{B}} \lambda_{g,B} \cdot [g + \varepsilon_{g,B} \cdot 1_B] \leq 0$ and $\lambda > 0$ and $\varepsilon > 0$.

Avoiding partial loss

- Set of (finite) events Ω^{*},
- Finite set of (gamble, event)-pairs $\mathcal{N} \in \mathcal{L} \times \Omega^*$,
- Conditional lower prevision $\underline{P} \in [\mathcal{N} \to \mathbb{R}]$,
- Set of (conditional marginal gamble, event)-pairs

$$\mathcal{B} \coloneqq \left\{ \left(\left[h - \underline{P}(h|B) \right] \cdot 1_B, B \right) : (h, B) \in \mathcal{N} \right\}$$

 $\begin{array}{ll} \text{find} & (\lambda,\varepsilon) \in \mathbb{R}^{\mathcal{B}} \times \mathbb{R}^{\mathcal{B}}, \\ \text{subject to} & \sum_{(g,B) \in \mathcal{B}} \lambda_{g,B} \cdot [g + \varepsilon_{g,B} \cdot 1_B] \leq 0 \quad \text{and} \quad \lambda > 0 \quad \text{and} \quad \varepsilon > 0. \end{array}$

find $(\lambda, \nu, \mu) \in \mathbb{R}^{\mathcal{B}} \times (\mathbb{R}^{\mathcal{B}} \times \mathbb{R}^{\mathcal{B}}) \times \mathbb{R}^{\Omega}$, subject to $\sum_{(g,B)\in\mathcal{B}} \lambda_{g,B} \cdot [\nu_{g,B,g} \cdot g + \nu_{g,B,B} \cdot 1_B] + \sum_{\omega\in\Omega} \mu_{\omega} \cdot 1_{\omega} = 0$ and to $\lambda > 0$ and $\nu > 0$ and $\mu \ge 0$.

Conditional natural extension

Set of (conditional almost desirable gamble, event)-pairs

 $\mathcal{B} \in \mathcal{L} \times \Omega^*$,

• (Gamble, event)-pair of interest $(f, C) \in \mathcal{L} \times \Omega^*$.

Conditional natural extension

Set of (conditional almost desirable gamble, event)-pairs

 $\mathcal{B} \in \mathcal{L} \times \Omega^*$,

• (Gamble, event)-pair of interest $(f, C) \in \mathcal{L} \times \Omega^*$.

 $\begin{array}{ll} \text{maximize} & \alpha \in \mathbb{R}, \\ \text{subject to} & f \cdot 1_C - \alpha \cdot 1_C \geq \sum_{(g,B) \in \mathcal{B}} \lambda_{g,B} \cdot \left[g + \varepsilon_{g,B} \cdot 1_B\right] \\ \text{and to} & \lambda \geq 0 \quad \text{and} \quad \varepsilon > 0. \end{array}$

Conditional natural extension

Set of (conditional almost desirable gamble, event)-pairs

 $\mathcal{B} \in \mathcal{L} \times \Omega^*$,

• (Gamble, event)-pair of interest $(f, C) \in \mathcal{L} \times \Omega^*$.

```
maximize \alpha \in \mathbb{R},
subject to f \cdot 1_C - \alpha \cdot 1_C \ge \sum_{(g,B) \in \mathcal{B}} \lambda_{g,B} \cdot [g + \varepsilon_{g,B} \cdot 1_B]
and to \lambda \ge 0 and \varepsilon > 0.
```

 $\begin{array}{ll} \text{maximize} & \alpha \in \mathbb{R}, \\ \text{subject to} & \sum_{(g,B)\in\mathcal{B}}\lambda_{g,B}\cdot \left[v_{g,B,g}\cdot g+v_{g,B,B}\cdot 1_B\right] + \sum_{\omega\in\Omega}\mu_{\omega}\cdot 1_{\omega} + \alpha\cdot 1_C = f\cdot 1_C \\ \text{and to} & \lambda \ge 0 \quad \text{and} \quad v > 0 \quad \text{and} \quad \mu \ge 0. \end{array}$

Representation of general cones

Represent a finitary *general* cone as a *convex closure* of a finite number of finitary *open* cones.

$$\underline{\mathcal{R}} \coloneqq \left\{ \sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g : \lambda > 0, v \ge 0 \right\} \quad \text{ for } \quad \mathcal{R} \Subset \mathcal{L}^*.$$

Representation of general cones

Represent a finitary *general* cone as a *convex closure* of a finite number of finitary *open* cones.

$$\underline{\mathcal{R}} \coloneqq \left\{ \sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g : \lambda > 0, \nu > 0 \right\} \quad \text{for} \quad \mathcal{R} \in \mathcal{L}^*$$

Definition

An ajar cone C is finitary iff its closure clC is finitary and the intersection of C with each of clC's facets is a finitary (open, closed, or ajar) cone.

Representation of general cones

Represent a finitary *general* cone as a *convex closure* of a finite number of finitary *open* cones.

$$\underline{\mathcal{R}} \coloneqq \left\{ \sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g : \lambda > 0, \nu > 0 \right\} \quad \text{for} \quad \mathcal{R} \in \mathcal{L}^*$$

Definition

An ajar cone C is finitary iff its closure clC is finitary and the intersection of C with each of clC's facets is a finitary (open, closed, or ajar) cone.

Theorem $\underline{\mathcal{R}}$ is a finitary general cone for every $\mathcal{R} \in \mathcal{L}^*$.

Representation of general cones: illustration

 $\mathcal{R} \coloneqq \{\{g_3, g_5, g_{10}\}, \{g_1, g_2\}, \{g_2, g_7\}, \{g_8, g_9\}, \{g_2\}, \{g_4\}, \{g_6\}\}.$

Representation of general cones: illustration

 $\mathcal{R} \coloneqq \{\{g_3, g_5, g_{10}\}, \{g_1, g_2\}, \{g_2, g_7\}, \{g_8, g_9\}, \{g_2\}, \{g_4\}, \{g_6\}\}.$

Cone-in-facet representation:

 $\{\{g_k: k=1..10\}, \{g_1,g_2\}, \{g_2,g_4\}, \{g_6\}, \{g_8,g_9\}, \{g_2\}, \{g_4\}\}.$

Representation of general cones: illustration

 $\mathcal{R} \coloneqq \{\{g_3, g_5, g_{10}\}, \{g_1, g_2\}, \{g_2, g_7\}, \{g_8, g_9\}, \{g_2\}, \{g_4\}, \{g_6\}\}.$

Cone-in-facet representation:

 $\{\{g_k: k=1..10\}, \{g_1,g_2\}, \{g_2,g_4\}, \{g_6\}, \{g_8,g_9\}, \{g_2\}, \{g_4\}\}.$

Less redundant representation:

 $\{\{g_5,g_7,g_{10}\},\{g_1,g_2\},\{g_8,g_9\},\{g_2\},\{g_4\},\{g_6\}\}.$

Formulation of the general problem

Given a general cone represented by $\mathcal{R} \in \mathcal{L}^*$ and a gamble $h \in \mathcal{L}$, we wish to

find
$$(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$$

 $\begin{array}{ll} \text{subject to} & \sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = h \\ \text{and to} & \lambda > 0 \quad \text{and} \quad v > 0 \end{array}$

Formulation of the general problem

Given a general cone represented by $\mathcal{R} \in \mathcal{L}^*$ and a gamble $h \in \mathcal{L}$, we wish to

or maximize an affine function of $\mu := (\lambda_{\mathcal{D}} \cdot v_{\mathcal{D},g} : \mathcal{D} \in \mathcal{R}, g \in \mathcal{D}),$

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D}\in\mathcal{R}}\sum_{g\in\mathcal{D}}\mu_{\mathcal{D},g}\cdot g = h$ and to $\lambda > 0$ and v > 0

Formulation of the general problem

Given a general cone represented by $\mathcal{R} \in \mathcal{L}^*$ and a gamble $h \in \mathcal{L}$, we wish to

or maximize an affine function of $\mu := (\lambda_{\mathcal{D}} \cdot v_{\mathcal{D},g} : \mathcal{D} \in \mathcal{R}, g \in \mathcal{D}),$

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \sum_{g \in \mathcal{D}} \mu_{\mathcal{D},g} \cdot g = h$ and to $\lambda > 0$ and $\nu > 0$ and to possibly additional linear constraints on μ .

WLOG h = 0 in feasibility problem

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = h$ and to $\lambda > 0$ and v > 0and to possibly ... $\mu \coloneqq (\lambda_{\mathcal{D}} \cdot v_{\mathcal{D},g} : \mathcal{D} \in \mathcal{R}, g \in \mathcal{D}).$

WLOG h = 0 in feasibility problem

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = h$ and to $\lambda > 0$ and v > 0and to possibly ... $\mu \coloneqq (\lambda_{\mathcal{D}} \cdot v_{\mathcal{D},g} : \mathcal{D} \in \mathcal{R}, g \in \mathcal{D}).$

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R} \cup \{\{-h\}\}} \times \times_{\mathcal{D} \in \mathcal{R} \cup \{\{-h\}\}} \mathbb{R}^{\mathcal{D}}$, subject to $\sum_{\mathcal{D} \in \mathcal{R} \cup \{\{-h\}\}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = 0$ and to $\lambda > 0$ and v > 0 and $\mu_{\{-h\},-h} = \lambda_{\{-h\}} \cdot v_{\{-h\},-h} \ge 1$ and to possibly ... $\mu \coloneqq (\lambda_{\mathcal{D}} \cdot v_{\mathcal{D},g} \colon \mathcal{D} \in \mathcal{R}, g \in \mathcal{D})$.

Blunt topological closure

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = 0$ and to $\lambda > 0$ and v > 0 and possibly...

Blunt topological closure

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = 0$ and to $\lambda > 0$ and v > 0 and possibly...

find $\mu \in \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$, subject to $\sum_{\mathcal{D} \in \mathcal{R}} \sum_{g \in \mathcal{D}} \mu_{\mathcal{D},g} \cdot g = 0$ and $\mu \ge 0$ and possibly... and to $\sum_{\mathcal{D} \in \mathcal{R}} \sum_{g \in \mathcal{D}} \mu_{\mathcal{D},g} \ge 1$.

Topological interior

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = 0$ and to $\lambda > 0$ and v > 0 and possibly...

Topological interior

find $(\lambda, v) \in \mathbb{R}^{\mathcal{R}} \times \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$ subject to $\sum_{\mathcal{D} \in \mathcal{R}} \lambda_{\mathcal{D}} \cdot \sum_{g \in \mathcal{D}} v_{\mathcal{D},g} \cdot g = 0$ and to $\lambda > 0$ and v > 0 and possibly...

find $\mu \in \times_{\mathcal{D} \in \mathcal{R}} \mathbb{R}^{\mathcal{D}}$, subject to $\sum_{\mathcal{D} \in \mathcal{R}} \sum_{g \in \mathcal{D}} \mu_{\mathcal{D},g} \cdot g = 0$ and $\mu \ge 1$ and possibly...

The CONEstrip algorithm

We can solve the general feasibility problem with arbitrary $\mathcal{R} \in \mathcal{L}^*$ and $h \coloneqq 0$ with the following algorithm:

1. maximize $\sum_{\mathcal{D}\in\mathcal{R}} \tau_{\mathcal{D}}$, subject to $\sum_{\mathcal{D}\in\mathcal{R}} \sum_{g\in\mathcal{D}} \mu_{\mathcal{D},g} \cdot g = 0$ and $\mu \ge 0$ and possibly... and to $0 \le \tau \le 1$ and $\forall \mathcal{D} \in \mathcal{R} : \tau_{\mathcal{D}} \le \mu_{\mathcal{D}}$ and $\sum_{\mathcal{D}\in\mathcal{R}} \tau_{\mathcal{D}} \ge 1$.

2. a. If there is no feasible solution, then the problem is infeasible.
b. Otherwise set S := {D ∈ R : τ_D > 0}; τ is equal to 1 on S:

i. If $\forall \mathcal{D} \in \mathcal{R} \setminus \mathcal{S} : \mu_{\mathcal{D}} = 0$, then the general problem is feasible.

ii. Otherwise, return to step 1 with \mathcal{R} replaced by \mathcal{S} .

The CONEstrip algorithm

We can solve the general feasibility problem with arbitrary $\mathcal{R} \in \mathcal{L}^*$ and $h \coloneqq 0$ with the following algorithm:

1. maximize $\sum_{\mathcal{D}\in\mathcal{R}} \tau_{\mathcal{D}}$, subject to $\sum_{\mathcal{D}\in\mathcal{R}} \sum_{g\in\mathcal{D}} \mu_{\mathcal{D},g} \cdot g = 0$ and $\mu \ge 0$ and possibly... and to $0 \le \tau \le 1$ and $\forall \mathcal{D} \in \mathcal{R} : \tau_{\mathcal{D}} \le \mu_{\mathcal{D}}$ and $\sum_{\mathcal{D}\in\mathcal{R}} \tau_{\mathcal{D}} \ge 1$.

2. a. If there is no feasible solution, then the problem is infeasible.
b. Otherwise set S := {D ∈ R : τ_D > 0}; τ is equal to 1 on S:

i. If $\forall \mathcal{D} \in \mathcal{R} \smallsetminus \mathcal{S} : \mu_{\mathcal{D}} = 0$, then the general problem is feasible.

ii. Otherwise, return to step 1 with \mathcal{R} replaced by \mathcal{S} .

Proposition

The claims made in the CONEstrip algorithm are veracious and it terminates after at most $|\mathcal{R}| - 1$ iterations.

The CONEstrip algorithm: illustration

 $\mathcal{R} \coloneqq \left\{ \{g_3, g_5, g_{10}\}, \\ \{g_1, g_2\}, \\ \{g_2, g_7\}, \\ \{g_8, g_9\}, \\ \{g_2\}, \{g_4\}, \{g_6\} \right\}$

The CONEstrip algorithm: illustration

 $\mathcal{R} \coloneqq \left\{ \{g_3, g_5, g_{10}\}, \\ \{g_1, g_2\}, \\ \{g_2, g_7\}, \\ \{g_8, g_9\}, \\ \{g_2\}, \{g_4\}, \{g_6\} \right\}$

We show that $g_3 \in \underline{\mathcal{R}}$:

(It. 1) $S = \mathcal{R}$, $\tau_{\{g_2\}} = \tau_{\{g_4\}} = \tau_{\{-g_3\}} = 1$, and possibly $\mu_{\{g_3, g_5, g_{10}\}} > 0$ (It. 2) $S = \{\{g_2\}, \{g_4\}, \{-g_3\}\}$ and $\tau = 1$.

The CONEstrip algorithm: illustration

 $\mathcal{R} \coloneqq \left\{ \{g_3, g_5, g_{10}\}, \\ \{g_1, g_2\}, \\ \{g_2, g_7\}, \\ \{g_8, g_9\}, \\ \{g_2\}, \{g_4\}, \{g_6\} \right\}$

We show that $g_1 \notin \underline{\mathcal{R}}$:

(lt. 1) $S = \mathcal{R}$, $\tau_{\{g_2\}} = \tau_{\{g_1,g_2\}} = \tau_{\{-g_1\}} = 1$, and necessarily $\mu_{\{g_3,g_5,g_{10}\},g_{10}} > 0$, (lt. 2) $S = \{\{g_2\}, \{g_1,g_2\}, \{-g_1\}\}$, infeasible.

Optimization problems

We can solve the general optimization problem with arbitrary $\mathcal{R} \in \mathcal{L}^*$ and $h \in \mathcal{L}$ with the following algorithm:

- 1. Apply the CONEstrip algorithm to $\mathcal{R} \cup \{-h\}$ with $\mu_{\{-h\},-h} \ge 1$ as an additional constraint; if feasible, continue to the next step with the terminal set S.
- 2. maximize an affine function of μ ,

subject to $\sum_{\mathcal{D}\in\mathcal{S}}\sum_{g\in\mathcal{D}}\mu_{\mathcal{D},g} \cdot g = h$ and to $\mu \ge 0$ and possibly...

 We now have an efficient, polynomial time algorithm for consistency checking and inference in uncertainty modeling frameworks using general cones.

- We now have an efficient, polynomial time algorithm for consistency checking and inference in uncertainty modeling frameworks using general cones.
- Integrating CONEstrip with a specific linear programming solver might allow for a practical increase in efficiency.

- We now have an efficient, polynomial time algorithm for consistency checking and inference in uncertainty modeling frameworks using general cones.
- Integrating CONEstrip with a specific linear programming solver might allow for a practical increase in efficiency.
- What about uncertainty modeling frameworks using general bounded polytopes? Such polytopes can be seen as intersections of a general cone and a hyperplane.

- We now have an efficient, polynomial time algorithm for consistency checking and inference in uncertainty modeling frameworks using general cones.
- Integrating CONEstrip with a specific linear programming solver might allow for a practical increase in efficiency.
- What about uncertainty modeling frameworks using general bounded polytopes? Such polytopes can be seen as intersections of a general cone and a hyperplane.
- For useful discussion, I thank Dirk Aeyels, Gert de Cooman, Nathan Huntley, and Filip Hermans.

Bibliography I

David Avis, David Bremner, and Raimund Seidel. How good are convex hull algorithms? Computational Geometry, 7:265–301, 1997. doi:10.1016/S0925-7721(96)00023-5.

G. Coletti and R. Scozzafava. Probabilistic logic in a coherent setting. Kluwer Academic Publishers, 2002. doi:10.1007/978-94-010-0474-9.

Inés Couso and Serafín Moral.

Sets of desirable gambles: conditioning, representation, and precise probabilities.

International Journal of Approximate Reasoning, 52(7):1034–1055, 2011. doi:10.1016/j.ijar.2011.04.004.

Bibliography II

Erik Quaeghebeur.

Desirability.

In Frank P. A. Coolen, Thomas Augustin, Gert De Cooman, and Matthias C. M. Troffaes, editors, *Introduction to Imprecise Probabilities*. Wiley, at the editor.

Erik Quaeghebeur.

murasyp: Python software for accept/reject statement-based uncertainty modeling

In progress. URL http://equaeghe.github.com/murasyp.

Erik Quaeghebeur, Gert De Cooman, and Filip Hermans. Accept & reject statement-based uncertainty models. In preparation.

F. Rinaldi, F. Schoen, and M. Sciandrone. Concave programming for minimizing the zero-norm over polyhedral sets. *Computational Optimization and Applications*, 46(3):467–486, 2010. doi:10.1007/s10589-008-9202-9.

Bibliography III

Peter Walley.

Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London, 1991.

Peter Walley.

Towards a unified theory of imprecise probability.

International Journal of Approximate Reasoning, 24(2-3):125–148, 2000. doi:10.1016/S0888-613X(00)00031-1.

Peter Walley, Renato Pelessoni, and Paolo Vicig.

Direct algorithms for checking consistency and making inferences from conditional probability assessments.

Journal of Statistical Planning and Inference, 126(1):119–151, 2004. doi:10.1016/j.jspi.2003.09.005.

Günter M. Ziegler. Lectures on Polytopes. Springer, 1995.