Modeling uncertainty using accept & reject statements

Erik Quaeghebeur, Gert de Cooman, Filip Hermans

Ghent University, SYSTeMS Research Group, Belgium
The setup

- Experiment with outcomes in some possibility space Ω.
- Agent uncertain about the experiment’s outcome.
- Linear space \mathcal{L} of real-valued gambles on Ω.

Agent expresses uncertainty by making statements about gambles, forming an assessment.

Agent wishes to rationally deduce inferences and draw conclusions from this assessment.
The work we build on

- De Finetti: previsions P.

\[f \Rightarrow \text{sure loss} \]

\[Pg = 0 \]

\[f - Pf \]

\[f - Pf \Rightarrow \text{set of desirable gambles} \]
The work we build on

- De Finetti: previsions P.

- Williams, Seidenfeld et al., Walley:
 - lower previsions P,
 - sets of acceptable/favorable/desirable gambles,
 - partial preference orders \succeq.
Accepting & Rejecting Gambles

Accepting a gamble f implies a commitment to engage in the following transaction:

(i) the experiment’s outcome $\omega \in \Omega$ is determined,

(ii) the agent gets the—possibly negative—payoff $f(\omega)$.

Rejecting a gamble: the agent considers accepting it unreasonable.
Accepting & Rejecting Gambles

Accepting a gamble f implies a commitment to engage in the following transaction:

(i) the experiment’s outcome $\omega \in \Omega$ is determined,
(ii) the agent gets the—possibly negative—payoff $f(\omega)$.

Rejecting a gamble: the agent considers accepting it unreasonable.

Assessment A pair $\mathcal{A} := \langle \mathcal{A}_\geq; \mathcal{A}_\leq \rangle$ of sets of accepted and rejected gambles.
Gamble Categorization

- **Accepted** \(\mathcal{A}_\geq \).
- **Rejected** \(\mathcal{A}_< \).
- **Unresolved** Neither accepted nor rejected; \(\mathcal{A}_\ominus := \mathcal{L} \setminus (\mathcal{A}_\geq \cup \mathcal{A}_<) \).
- **Confusing** Both accepted and rejected; \(\mathcal{A}_\oplus := \mathcal{A}_\geq \cap \mathcal{A}_< \).

\[
\begin{array}{c}
\oplus \\
\downarrow \\
\nearrow \\
\mathcal{A}_\geq \cap \mathcal{A}_<
\end{array}
\]
Gamble Categorization

Accepted \mathcal{A}_\geq.

Rejected \mathcal{A}_\leq.

Unresolved Neither accepted nor rejected; $\mathcal{A}_\ominus := \mathcal{L} \setminus (\mathcal{A}_\geq \cup \mathcal{A}_\leq)$.

Confusing Both accepted and rejected; $\mathcal{A}_\equiv := \mathcal{A}_\geq \cap \mathcal{A}_\leq$.

Indifferent Both it and its negation accepted; $\mathcal{A}_\ominus := \mathcal{A}_\geq \cap \neg \mathcal{A}_\geq$.

Favorable Accepted with a rejected negation; $\mathcal{A}_\succ := \mathcal{A}_\geq \cap \neg \mathcal{A}_\leq$.

Incomparable Both it and its negation unresolved; $\mathcal{A}_\vartriangledown := \mathcal{A}_\ominus \cap \neg \mathcal{A}_\ominus$.
The first rationality axiom: **No Confusion**

Because of the interpretation attached to acceptance and rejection statements, we consider confusion irrational.

So we require assessments \mathcal{A} to not contain confusion:

$$\mathcal{A}_\emptyset = \mathcal{A}_\geq \cap \mathcal{A}_\leq = \emptyset$$
Deductive extension

We assume gamble payoffs are expressed in a linear precise utility scale, so:

- combinations of accepted gambles are acceptable ($\mathcal{K} + \mathcal{K}$).
- positively scaled accepted gambles are acceptable ($\overline{\mathcal{K}}$).

The positive linear hull operator posi combines both operations; it generates convex cones.
Deductive extension

We assume gamble payoffs are expressed in a linear precise utility scale, so:

- combinations of accepted gambles are acceptable ($\mathcal{K} + \mathcal{K}$).
- positively scaled accepted gambles are acceptable ($\overline{\mathcal{K}}$).

The positive linear hull operator posi combines both operations; it generates convex cones.

An assessment \mathcal{A} can be deductively extended to a deductively closed assessment $\mathcal{D} := \langle \text{posi} \mathcal{A}_\geq; \mathcal{A}_\leq \rangle$.
The second rationality axiom: **Deductive Closure**

The assumption of a linear precise utility scale leads us to exclusively use deductively closed assessments \mathcal{D} for inference and decision purposes:

$$\text{posi } \mathcal{D}_\geq = \mathcal{D}_\geq$$
Gambles in limbo & reckoning extension

Deductive Closure interacts with No Confusion:

- Consider a deductively closed assessment \mathcal{D}.
- Additionally consider some unresolved gamble f acceptable.
- Apply deductive extension to $\langle \mathcal{D}_\geq \cup \{f\}; \mathcal{D}_< \rangle$.
- For some f, this would lead to an increase in confusion.
- These have the same effect as gambles in $\mathcal{D}_<$, and form the limbo $(\overline{\mathcal{D}_< \setminus \mathcal{D}_\geq} - (\mathcal{D}_\geq \cup \{0\})) \setminus \mathcal{D}_<$ of \mathcal{D}.
Gambles in limbo & reckoning extension

Deductive Closure interacts with No Confusion:

- Consider a deductively closed assessment \mathcal{D}.
- Additionally consider some unresolved gamble f acceptable.
- Apply deductive extension to $\langle \mathcal{D}_\geq \cup \{f\}; \mathcal{D}_< \rangle$.
- For some f, this would lead to an increase in confusion.
- These have the same effect as gambles in $\mathcal{D}_<$, and form the limbo $(\overline{\mathcal{D}_\geq \setminus \mathcal{D}_\geq} - (\mathcal{D}_\geq \cup \{0\})) \setminus \mathcal{D}_<$ of \mathcal{D}.

We use reckoning extension to reject gambles in limbo and create a model $\mathcal{M} := \langle \mathcal{D}_\geq; \mathcal{D}_\leq \cup (\overline{\mathcal{D}_\leq \setminus \mathcal{D}_\leq} - (\mathcal{D}_\geq \cup \{0\})) \rangle$.
The third rationality axiom: **No Limbo**

We consider ignoring gambles in limbo unreasonable and therefore further restrict attention to *models* \mathcal{M} for inference and decision purposes:

$$
(\overline{\mathcal{M}_< \setminus \mathcal{M}_\ge}) - (\mathcal{M}_\ge \cup \{0\}) \subseteq \mathcal{M}_<
$$
The fourth rationality axiom: **Indifference to Status Quo**

Because there is no adverse effect, it is not unreasonable to accept the zero gamble 0, status quo; because it is convenient, we find it reasonable:

$$0 \in \mathcal{M}_\geq$$
Main characterization result

An assessment \mathcal{M} is a model that satisfies No Confusion and Indifference to Status Quo iff

(i) $0 \in \mathcal{M}_\geq$,
(ii) $0 \notin \mathcal{M}_<$,
(iii) $\text{posi } \mathcal{M}_\geq = \mathcal{M}_\geq$,
(iv) $\mathcal{M}_< - \mathcal{M}_\geq \subseteq \mathcal{M}_<$.
Main characterization result

An assessment \mathcal{M} is a model that satisfies No Confusion and Indifference to Status Quo iff

(i) $0 \in \mathcal{M}_\geq$,
(ii) $0 \notin \mathcal{M}_<$,
(iii) $\text{posi } \mathcal{M}_\geq = \mathcal{M}_\geq$,
(iv) $\mathcal{M}_< - \mathcal{M}_\geq \subseteq \mathcal{M}_<$.

These partition gamble space as follows:
Gamble relations

- \(f \) is accepted in exchange for \(h \): \(f \geq h \iff f - h \in \mathcal{M}_\geq \).

\[
f - 2 \cdot g \quad 2 \cdot g - f
\]
Gamble relations

- f is accepted in exchange for h: $f \geq h \iff f - h \in \mathcal{M}_{\geq}$.
- f is dispreferred to h: $f < h \iff f - h \in \mathcal{M}_{<}$.
Gamble relations

- f is accepted in exchange for h: $f \succeq h \iff f - h \in \mathcal{M}_\succeq$.
- f is dispreferred to h: $f < h \iff f - h \in \mathcal{M}_<$.

- Indifference between f and h: $f \simeq h \iff f \geq h \land h \geq f \iff f - h \in \mathcal{M}_\simeq$.

The diagram illustrates the relationships between f, g, f', and g', with f being preferred over h, indifference between f and h, and f' and g' being incomparable.
Gamble relations

- f is accepted in exchange for h: $f \succeq h \iff f - h \in \mathcal{M}_\geq$.
- f is dispreferred to h: $f \prec h \iff f - h \in \mathcal{M}_<$.

- Indifference between f and h: $f \asymp h \iff f \geq h \land h \geq f \iff f - h \in \mathcal{M}_\sim$.
- f is preferred over h: $f \succ h \iff f \geq h \land h \prec f \iff f - h \in \mathcal{M}_\succ$.

![Diagram showing the relation between different gambles and the differences in their values.](image)
Gamble relations

- f is accepted in exchange for h: $f \geq h \iff f - h \in \mathcal{M}_\geq$.
- f is dispreferred to h: $f < h \iff f - h \in \mathcal{M}_<$.

- Indifference between f and h: $f \sim h \iff f \geq h \land h \geq f \iff f - h \in \mathcal{M}_\sim$.
- f is preferred over h: $f \succ h \iff f \geq h \land h < f \iff f - h \in \mathcal{M}_\succ$.
- f and h are incomparable: $f \asymp h \iff f - h \in \mathcal{M}_\asymp$.
Gamble relations \geq and $<$ are equivalent to a model that satisfies No Confusion and Indifference to Status Quo iff

(i) Accept Reflexivity: $f \geq f$,

(ii) Reject Irreflexivity: $f \nless f$,

(iii) Accept Transitivity: $f \geq g \land g \geq h \Rightarrow f \geq h$.

(iv) Mixed Transitivity: $f \less g \land h \geq g \Rightarrow f \less h$,

(v) Mixture independence: $f \geq g \iff \mu \cdot f + (1-\mu) \cdot h \geq \mu \cdot g + (1-\mu) \cdot h$.

Acceptability \geq is a non-strict pre-order (a vector ordering).

Indifference \equiv is an equivalence relation.

Preference \prec is a strict partial order.
Characterization result for gamble relations

Gamble relations \succeq and $<$ are equivalent to a model that satisfies No Confusion and Indifference to Status Quo iff

(i) Accept Reflexivity: $f \succeq f$,
(ii) Reject Irreflexivity: $f \not< f$,
(iii) Accept Transitivity: $f \geq g \land g \geq h \Rightarrow f \geq h$.
(iv) Mixed Transitivity: $f < g \land h \geq g \Rightarrow f < h$,
(v) Mixture independence: $f \geq g \iff \mu \cdot f + (1 - \mu) \cdot h \geq \mu \cdot g + (1 - \mu) \cdot h$.

- Acceptability \succeq is a non-strict pre-order (a vector ordering).
- Indifference \simeq is an equivalence relation.
- Preference \succ is a strict partial order.
Conclusions

Our framework

- generalizes existing linear precise utility based generalizations of probability theory,

- elegantly combines distinct strict and non-strict preference orders,

- flexible on input (assessment/elicitation) and output (inference/decisions) side,

- puts the appealing ‘sets of gambles’-based approaches in the spotlight.
Want to know more: read the full paper!

http://arxiv.org/abs/1208.4462