Modeling uncertainty using accept & reject statements

Erik Quaeghebeur, Gert de Cooman, Filip Hermans

Ghent University, SYSTeMS Research Group, Belgium

The setup

- Experiment with outcomes in some possibility space Ω .
- Agent uncertain about the experiment's outcome.
- Linear space \mathcal{L} of real-valued gambles on Ω .

- Agent expresses uncertainty by making statements about gambles, forming an assessment.
- Agent wishes to rationally deduce inferences and draw conclusions from this assessment.

The work we build on

▶ De Finetti: previsions *P*.

The work we build on

▶ De Finetti: previsions *P*.

- Williams, Seidenfeld et al., Walley:
 - lower previsions \underline{P} ,
 - sets of acceptable/favorable/desirable gambles,
 - partial preference orders ≥.

Accepting & Rejecting Gambles

Accepting a gamble *f* implies a commitment to engage in the following transaction:

- (i) the experiment's outcome $\omega \in \Omega$ is determined,
- (ii) the agent gets the—possibly negative—payoff $f(\omega)$.

Rejecting a gamble: the agent considers accepting it unreasonable.

Accepting & Rejecting Gambles

Accepting a gamble *f* implies a commitment to engage in the following transaction:

- (i) the experiment's outcome $\omega \in \Omega$ is determined,
- (ii) the agent gets the—possibly negative—payoff $f(\omega)$.

Rejecting a gamble: the agent considers accepting it unreasonable.

Assessment A pair $A := \langle A_{\succeq}; A_{\prec} \rangle$ of sets of accepted and rejected gambles.

Gamble Categorization

Accepted A_{\geq} .

Rejected A_{\prec} .

Unresolved Neither accepted nor rejected; $A_{\sim} := \mathcal{L} \setminus (A_{\succeq} \cup A_{\prec})$.

Confusing Both accepted and rejected; $A_{\emptyset} := A_{\succeq} \cap A_{\prec}$.

Gamble Categorization

Accepted A_{\geq} .

Rejected A_{\prec} .

Unresolved Neither accepted nor rejected; $A_{\sim} := \mathcal{L} \setminus (A_{\succeq} \cup A_{\prec})$.

Confusing Both accepted and rejected; $A_{\emptyset} := A_{\succeq} \cap A_{\prec}$.

Indifferent Both it and its negation accepted; $A_{\simeq} := A_{\succeq} \cap -A_{\succeq}$.

Favorable Accepted with a rejected negation; $A_{\triangleright} := A_{\succeq} \cap -A_{\prec}$.

Incomparable Both it and its negation unresolved; $A_{\approx} := A_{\sim} \cap -A_{\sim}$.

The first rationality axiom: No Confusion

Because of the interpretation attached to acceptance and rejection statements, we consider confusion irrational.

So we require assessments ${\cal A}$ to not contain confusion:

$$\mathcal{A}_{\emptyset} = \mathcal{A}_{\geq} \cap \mathcal{A}_{\prec} = \emptyset$$

Deductive extension

We assume gamble payoffs are expressed in a linear precise utility scale, so:

- combinations of accepted gambles are acceptable (K + K).
- ightharpoonup positively scaled accepted gambles are acceptable $(\overline{\mathcal{K}})$.

The positive linear hull operator posi combines both operations; it generates convex cones.

Deductive extension

We assume gamble payoffs are expressed in a linear precise utility scale, so:

- combinations of accepted gambles are acceptable $(\mathcal{K} + \mathcal{K})$.
- positively scaled accepted gambles are acceptable $(\overline{\mathcal{K}})$.

The positive linear hull operator posi combines both operations; it generates convex cones.

An assessment \mathcal{A} can be deductively extended to a deductively closed assessment $\mathcal{D} \coloneqq \langle \operatorname{posi} \mathcal{A}_{\succeq}; \mathcal{A}_{\prec} \rangle$.

The second rationality axiom: **Deductive Closure**

The assumption of a linear precise utility scale leads us to exclusively use deductively closed assessments \mathcal{D} for inference and decision purposes:

$$posi \mathcal{D}_{\geq} = \mathcal{D}_{\geq}$$

Gambles in limbo & reckoning extension

Deductive Closure interacts with No Confusion:

- Consider a deductively closed assessment \mathcal{D} .
- ▶ Additionally consider some unresolved gamble *f* acceptable.
- ▶ Apply deductive extension to $(\mathcal{D}_{\succeq} \cup \{f\}; \mathcal{D}_{\prec})$.
- ► For some *f*, this would lead to an increase in confusion.
- ▶ These have the same effect as gambles in \mathcal{D}_{\prec} , and form the limbo $\left(\left(\overline{\mathcal{D}_{\prec}} \setminus \mathcal{D}_{\succeq}\right) \left(\mathcal{D}_{\succeq} \cup \{0\}\right)\right) \setminus \mathcal{D}_{\prec}$ of \mathcal{D} .

Gambles in limbo & reckoning extension

Deductive Closure interacts with No Confusion:

- ightharpoonup Consider a deductively closed assessment \mathcal{D} .
- lacktriangle Additionally consider some unresolved gamble f acceptable.
- ▶ Apply deductive extension to $\langle \mathcal{D}_{\succeq} \cup \{f\}; \mathcal{D}_{\prec} \rangle$.
- ► For some f, this would lead to an increase in confusion.
- ► These have the same effect as gambles in \mathcal{D}_{\prec} , and form the limbo $\left(\left(\overline{\mathcal{D}_{\prec}} \setminus \mathcal{D}_{\succeq}\right) \left(\mathcal{D}_{\succeq} \cup \{0\}\right)\right) \setminus \mathcal{D}_{\prec}$ of \mathcal{D} .

We use reckoning extension to reject gambles in limbo and create a model $\mathcal{M} \coloneqq \left(\mathcal{D}_{\succeq}; \mathcal{D}_{\prec} \cup \left((\overline{\mathcal{D}_{\prec}} \setminus \mathcal{D}_{\succeq}) - (\mathcal{D}_{\succeq} \cup \{0\}) \right) \right)$.

The third rationality axiom: No Limbo

We consider ignoring gambles in limbo unreasonable and therefore further restrict attention to models \mathcal{M} for inference and decision purposes:

$$\left(\overline{\mathcal{M}_{\prec}} \setminus \mathcal{M}_{\succeq}\right) - \left(\mathcal{M}_{\succeq} \cup \{0\}\right) \subseteq \mathcal{M}_{\prec}$$

The fourth rationality axiom: Indifference to Status Quo

Because there is no adverse effect, it is not unreasonable to accept the zero gamble 0, status quo; because it is convenient, we find it reasonable:

$$0 \in \mathcal{M}_{\geq}$$

Main characterization result

An assessment ${\mathcal M}$ is a model that satisfies No Confusion and Indifference to Status Quo iff

- (i) $0 \in \mathcal{M}_{\geq}$,
- (ii) $0 \notin \mathcal{M}_{\prec}$,
- (iii) posi $\mathcal{M}_{\geq} = \mathcal{M}_{\geq}$,
- (iv) $\mathcal{M}_{\prec} \mathcal{M}_{\succeq} \subseteq \mathcal{M}_{\prec}$.

Main characterization result

An assessment ${\mathcal M}$ is a model that satisfies No Confusion and Indifference to Status Quo iff

- (i) $0 \in \mathcal{M}_{\geq}$,
- (ii) $0 \notin \mathcal{M}_{\prec}$,
- (iii) posi $\mathcal{M}_{\geq} = \mathcal{M}_{\geq}$,
- (iv) $\mathcal{M}_{\prec} \mathcal{M}_{\succeq} \subseteq \mathcal{M}_{\prec}$.

These partition gamble space as follows:

• f is accepted in exchange for h: $f \ge h \Leftrightarrow f - h \in \mathcal{M}_{\ge}$.

- f is accepted in exchange for $h: f \ge h \Leftrightarrow f h \in \mathcal{M}_{\ge}$.
- f is dispreferred to h: $f < h \Leftrightarrow f h \in \mathcal{M}_{<}$.

- f is accepted in exchange for h: $f \ge h \Leftrightarrow f h \in \mathcal{M}_{\ge}$.
- f is dispreferred to h: $f < h \Leftrightarrow f h \in \mathcal{M}_{<}$.

▶ indifference between f and h: $f \simeq h \Leftrightarrow f \geq h \land h \geq f \Leftrightarrow f - h \in \mathcal{M}_{\simeq}$.

- f is accepted in exchange for h: $f \ge h \Leftrightarrow f h \in \mathcal{M}_{\ge}$.
- f is dispreferred to h: $f < h \Leftrightarrow f h \in \mathcal{M}_{<}$.

- ▶ indifference between f and h: $f \cong h \Leftrightarrow f \geq h \land h \geq f \Leftrightarrow f h \in \mathcal{M}_{\cong}$.
- f is preferred over h: $f > h \Leftrightarrow f \ge h \land h \lt f \Leftrightarrow f h \in \mathcal{M}_{>}$.

- f is accepted in exchange for $h: f \ge h \Leftrightarrow f h \in \mathcal{M}_{\ge}$.
- f is dispreferred to h: $f < h \Leftrightarrow f h \in \mathcal{M}_{<}$.

- ▶ indifference between f and h: $f \cong h \Leftrightarrow f \geq h \land h \geq f \Leftrightarrow f h \in \mathcal{M}_{\cong}$.
- f is preferred over $h: f > h \Leftrightarrow f \ge h \land h \lt f \Leftrightarrow f h \in \mathcal{M}_{>}$.
- f and h are incomparable: $f \times h \Leftrightarrow f h \in \mathcal{M}_{\approx}$.

Characterization result for gamble relations

Gamble relations ≥ and < are equivalent to a model that satisfies No Confusion and Indifference to Status Quo iff

- (i) Accept Reflexivity: $f \ge f$,
- (ii) Reject Irreflexivity: $f \nmid f$,
- (iii) Accept Transitivity: $f \ge g \land g \ge h \Rightarrow f \ge h$.
- (iv) Mixed Transitivity: $f < g \land h \ge g \Rightarrow f < h$,
- (v) Mixture independence: $f \ge g \Leftrightarrow \mu \cdot f + (1 \mu) \cdot h \ge \mu \cdot g + (1 \mu) \cdot h$.

Characterization result for gamble relations

Gamble relations ≥ and < are equivalent to a model that satisfies No Confusion and Indifference to Status Quo iff

- (i) Accept Reflexivity: $f \ge f$,
- (ii) Reject Irreflexivity: $f \nmid f$,
- (iii) Accept Transitivity: $f \ge g \land g \ge h \Rightarrow f \ge h$.
- (iv) Mixed Transitivity: $f < g \land h \ge g \Rightarrow f < h$,
- (v) Mixture independence: $f \ge g \Leftrightarrow \mu \cdot f + (1 \mu) \cdot h \ge \mu \cdot g + (1 \mu) \cdot h$.

- Acceptability ≥ is a non-strict pre-order (a vector ordering).
- Indifference ≃ is an equivalence relation.
- Preference > is a strict partial order.

Conclusions

Our framework

- generalizes existing linear precise utility based generalizations of probability theory,
- elegantly combines distinct strict and non-strict preference orders,
- flexible on input (assessment/elicitation) and output (inference/decisions) side,
- puts the appealing 'sets of gambles'-based approaches in the spotlight.

Want to know more: read the full paper!

