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Abstract We consider linear programming problems with uncertain
constraint coefficients described by intervals or, more generally, possi-
bility distributions. The uncertainty is given a behavioral interpretation
using coherent lower previsions from the theory of imprecise probabilities.
We give a meaning to the linear programming problems by reformulat-
ing them as decision problems under such imprecise-probabilistic uncer-
tainty. We provide expressions for and illustrations of the maximin and
maximal solutions of these decision problems and present computational
approaches for dealing with them.
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1 Introduction

Linear programming problems thank their importance both to the great variety
of optimization questions that can be modeled by them and to the existence of
computationally efficient algorithms for solving them [2]. A linear programming
problem can be expressed in the following full (left) and compact (right) forms:

maximize
∑︀𝑛

𝑘=1 𝑐𝑘𝑥𝑘

subject to ∀𝑚
ℓ=1(

∑︀𝑛
𝑘=1 𝑎ℓ𝑘𝑥𝑘 ≤ 𝑏ℓ),

∀𝑛
𝑘=1(𝑥𝑘 ≥ 0)

≡
maximize 𝑐𝑇𝑥
subject to 𝑎𝑥 ≤ 𝑏,

𝑥 ≥ 0

where 𝑥 in R𝑛 is the optimization vector of dimension 𝑛 ∈ N, 𝑎 in R𝑚×𝑛 and
𝑏 in R𝑚 are the constraint coefficient matrix and (column) vector with 𝑚 ∈ N the
number of nontrivial constraints, and 𝑐 in R𝑛 is the objective function coefficient
vector—𝑐𝑇 is its transpose. (The lower case matrix notation is justified below.)

We are interested in linear programming problems in which there is uncer-
tainty in some or all of the constraints. Being able to treat them allows us to
more realistically deal with real-life operations research problems [8, Section 5].

If we are uncertain about the value of a particular constraint coefficient, we
represent it by an upper case letter, e.g., 𝐴ℓ𝑘 or 𝐵ℓ, and similarly 𝐴 and 𝐵 if this
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matrix and vector have one or more uncertain components. To these (matrices
or vectors of) uncertain coefficients we must associate a model to formalize the
uncertainty. These problems can then be expressed as

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝐵, 𝑥 ≥ 0

with given uncertainty model for (𝐴, 𝐵)

This uncertainty means that, for a given choice of 𝑥, it may be uncertain whether
𝑥 satisfies the constraints or not, and therefore it is not clear what it means to
‘maximize’ 𝑐𝑇𝑥 in such a problem.

Our approach is to transform the problem into a decision problem (Section 2)
in which a fixed penalty is received if any of the constraints are broken [7]. Since
this is a reformulation as a decision problem, it can then in principle be solved
using a suitable optimality criterion for the uncertainty models being used, for
instance maximizing expected utility when probability distributions are used,
as we do in Section 3 to introduce the basic ideas. In Section 4, we show how
these ideas are generalized to all uncertainty models that can be seen as coherent
lower or upper previsions [11] and introduce maximinity and maximality, the two
chosen amongst many compatible optimality criteria. We focus on two specific
types of uncertainty models: intervals—vacuous lower probabilities—in Section 5,
and, more generally, possibility distributions—maxitive upper probabilities—in
Section 6. A simplifying assumption we make in this paper is that the uncer-
tainty models for the various uncertain constraint coefficients are independent,
the formal meaning of which we will make precise for each type.

We were surprised at how different this approach is from those usually found
in the literature—we only have space for a fleeting overview. First the probabilis-
tic case: Dantzig [4] looked at the problem as a staged one: first choose 𝑥, observe
(𝐴, 𝐵), and then ‘repair’ broken constraints. Charnes & Cooper [3] proposed to
solve the problem under the added ‘chance constraint’ that the probability of
failing a constraint is below some level. Our solution for the interval case with
maximinity, although arrived at differently, essentially reduces to the approach
of Soyster [9]; further results in this vein can be found in the domains of inexact
and robust optimization [5,1]. The possibility distribution case has been analyzed
from a very wide range of angles by the fuzzy sets community—all nevertheless
differing from ours; the approach of Jamison & Lodwick [6] is one to mention,
because they also pursue a penalty idea, but use a different optimality criterion.

To illustrate our methods, we introduce a running example, in which only
one constraint coefficient is uncertain (left: full form, right: shorthand form):

maximize 2𝑥1 + 3𝑥2
subject to 1𝑥1 + 3𝑥2 ≤ 2,

1𝑥1 + 1𝑥2 ≤ 𝐵2,
−3𝑥1 − 3𝑥2 ≤ −1,

𝑥1 ≥ 0, 𝑥2 ≥ 0

≡ maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

For reference, we first show, in Figure 1, the usual linear programming problem,
i.e., for some particular precisely known 𝐵2, and its solution.
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maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 1

𝑥1

𝑥2

( 1
2 , 1

2 )
2
3

11
3

1
3

Figure 1. Example linear programming problem: the constraints are drawn using hairy
lines; the feasible set is shaded dark gray; the convex solution set of optimization vectors
attaining the maximal value 5/2 is a singleton in this case, represented as a black dot.

2 Reformulation as a Decision Problem

Now we describe the decision problem that we use in the case of uncertainty.
For each optimization vector 𝑥 and each possible realization (𝑎, 𝑏) of (𝐴, 𝐵),
we associate a utility 𝑐𝑇𝑥, unless 𝑥 fails a constraint, in which case the utility
becomes a penalty value 𝐿. This value 𝐿 should be chosen so it is strictly worse
to fail the constraints than to satisfy them, and so 𝐿 should be strictly less than
𝑐𝑇𝑥 for any 𝑥 that is feasible for some possible realization (𝑎, 𝑏).

We use 𝐴𝑥 ≤ 𝐵 as a shorthand for the event {(𝑎, 𝑏) ∈ R𝑚×𝑛 × R𝑚 : 𝑎𝑥 ≤ 𝑏}
and so the corresponding indicator function 𝐼𝐴𝑥≤𝐵 is 1 on this event and 0
elsewhere; idem for 𝐴𝑥 � 𝐵. Then the gain or utility function associated to 𝑥 is

𝐺𝑥 := 𝑐𝑇𝑥𝐼𝐴𝑥≤𝐵 + 𝐿𝐼𝐴𝑥�𝐵 = 𝐿 + (𝑐𝑇𝑥 − 𝐿)𝐼𝐴𝑥≤𝐵 . (1)

Given such a utility function and an uncertainty model for (𝐴, 𝐵), we can use a
suitable optimality criterion to determine the optimal choices of 𝑥.

As can be gleaned from the formulation of our running example and Figure 1,
independent of the uncertainty about 𝐵2, any feasible optimization vector 𝑥 will
have a value of at least 2/3, as achieved in (1/3, 0). Therefore we are allowed the
choice 𝐿 = 0, which simplifies our discussion of the running example.

3 Probability Mass Functions

A simple probabilistic case serves as a good introduction to the main ideas of
our method. Assume the uncertainty about the independent scalar uncertain
variables is expressed using probability mass functions and let 𝑝 be the corre-
sponding product probability mass function for (𝐴, 𝐵) with Cartesian product
support 𝒜 × ℬ. Let 𝑃 denote both the associated probability measure for sub-
sets of 𝒜 × ℬ and linear prevision (expectation operator) for gambles (real-valued
functions) on 𝒜 × ℬ.

Utility functions are gambles. The expected utility of choosing an optimiza-
tion vector 𝑥 ≥ 0 is

𝑃 (𝐺𝑥) = 𝑃 (𝐿 + (𝑐𝑇𝑥 − 𝐿)𝐼𝐴𝑥≤𝐵) = 𝐿 + (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵). (2)
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We give meaning to the linear program with uncertain constraints thus defined
by saying that the solution must maximize expected utility:

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝐵, 𝑥 ≥ 0

with given 𝑝
→ maximize 𝐿 + (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵)

subject to 𝑥 ≥ 0

As the objective function is in general not affine in 𝑥, the resulting optimization
problem is in general no longer a linear program. In general, it is also difficult to
compute the probabilistic factor 𝑃 (𝐴𝑥 ≤ 𝐵), let alone find an expression for it.
In Figure 2, we give a simple example that can nevertheless be solved by hand.

We use a conceptually useful generalization of the feasibility concept: an op-
timization vector 𝑥 is 𝑃 (𝐴𝑥 ≤ 𝐵)-feasible; for correspondence with the standard
case, 0-feasible vectors are called infeasible and 1-feasible vectors feasible.

maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

with 𝑝𝐵2 (𝑏) =

⎧⎨⎩
3/5, 𝑏 = 1,
1/5, 𝑏 ∈ {2/3, 4/3},

0, elsewhere

↓ MEU (𝐿 = 0)

maximize 𝑃 (𝐵2 ≥ 𝑏)

(︁ maximize 𝑐𝑇𝑥
subject to 𝑥 C 𝑏

)︁
subject to 𝑏 ∈ {2/3, 1, 4/3}

𝑥1

𝑥2

( 1
2 , 1

2 )
(1, 1

3 )

2
3

2
3

1 4
3

1
3

1
3

Figure 2. Example linear programming problem with probabilistic uncertainty: the
feasible set is shaded dark gray, the 4/5-feasible set gray, and the 1/5-feasible set light
gray; because the set of optimization vectors is partitioned according to probability
value, the maximization can be done in a nested manner; the solution set of optimiza-
tion vectors attaining the maximal expected value 2 is given using black dots.

4 Generalizing the Probabilistic Case

Coherent lower and upper previsions. A wide range of uncertainty models
can be represented using coherent lower and upper previsions from the theory of
imprecise probabilities [11]. Like linear previsions, these are expectation opera-
tors, but whereas linear previsions can be interpreted as specifying fair prices for
buying and selling gambles, coherent lower and upper previsions can be respec-
tively interpreted as specifying supremum acceptable buying prices and infimum
acceptable selling prices. They are conjugate operators; given a coherent lower
prevision 𝑃 , the conjugate coherent upper prevision is given by 𝑃 (𝑓) = −𝑃 (−𝑓)
for every gamble 𝑓 .

Coherent lower and upper probabilities are derived concepts for which we use
the same symbol: given an event ℰ , we have 𝑃 (ℰ) = 𝑃 (𝐼ℰ) and 𝑃 (ℰ) = 𝑃 (𝐼ℰ). As
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before, we generalize the feasibility concept: an optimization vector 𝑥 is called
inner 𝑃 (𝐴𝑥 ≤ 𝐵)-feasible and outer 𝑃 (𝐴𝑥 ≤ 𝐵)-feasible; for correspondence
with the standard case, outer 0-feasible vectors are called infeasible and inner
1-feasible points feasible.

Optimality criteria. When using coherent lower and upper previsions it is no
longer possible to maximize expected utility. Several generalizations have been
proposed, of which we consider maximinity and maximality. Troffaes [10] gives
a more detailed discussion of these and other optimality criteria.

Under the maximinity criterion, applied to our problem, those optimization
vectors 𝑥 ≥ 0 are optimal that maximize the lower expected utility

𝑃 (𝐺𝑥) = 𝑃 (𝐿 + (𝑐𝑇𝑥 − 𝐿)𝐼𝐴𝑥≤𝐵) = 𝐿 + (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵). (3)

Under the maximality criterion, those 𝑥 ≥ 0 are optimal that are undominated
in comparisons with all other optimization vectors in the following sense:

inf
𝑧∈R𝑛

𝑃 (𝐺𝑥 − 𝐺𝑧) = inf
𝑧∈R𝑛

𝑃
(︀
(𝑐𝑇𝑥 − 𝐿)𝐼𝐴𝑥≤𝐵 − (𝑐𝑇𝑧 − 𝐿)𝐼𝐴𝑧≤𝐵

)︀
≥ 0. (4)

Additionally, we perform a further selection among maximin or maximal
solutions by imposing dominance, pointwise comparisons of utility functions:

∀𝑧 ∈ R𝑛 : 𝐺𝑧 = 𝐺𝑥 or max(𝐺𝑥 − 𝐺𝑧) > 0. (5)

Applied to our problem, pairwise comparisons between 𝑥 and 𝑧 differ qualita-
tively based on where 𝐺𝑥 and 𝐺𝑧 take a value larger than 𝐿:

(i) If 𝐴𝑥 ≤ 𝐵 * 𝐴𝑧 ≤ 𝐵, then 𝑧 does not dominate 𝑥 because 𝐺𝑥 and 𝐺𝑧 are
incomparable.

(ii) If 𝐴𝑥 ≤ 𝐵 = 𝐴𝑧 ≤ 𝐵, then 𝑧 dominates 𝑥 if 𝑐𝑇𝑥 < 𝑐𝑇𝑧 and therefore 𝑥 must
satisfy 𝑐𝑇𝑥 ≥ max(𝐴𝑥≤𝐵)=(𝐴𝑧≤𝐵) 𝑐𝑇𝑧; in particular, if 𝐴𝑧 ≤ 𝐵 is empty for
all 𝑧, no selection is made—we do not consider this trivial case further on.

(iii) If 𝐴𝑥 ≤ 𝐵 ⊂ 𝐴𝑧 ≤ 𝐵, then 𝑧 dominates 𝑥 if 𝑐𝑇𝑥 ≤ 𝑐𝑇𝑧 and therefore 𝑥 must
satisfy 𝑐𝑇𝑥 > max(𝐴𝑥≤𝐵)⊂(𝐴𝑧≤𝐵) 𝑐𝑇𝑧; in particular, if 𝐴𝑧 ≤ 𝐵 is nonempty,
all those 𝑥 for which 𝐴𝑥 ≤ 𝐵 is empty are weeded out.

In general, and also for the problems we consider in this paper, checking domi-
nance in a computationally efficient way remains an open problem.

5 Intervals

Assume the uncertainty about the 𝐴ℓ𝑘 and 𝐵ℓ is expressed using real intervals
[𝑎ℓ𝑘, 𝑎ℓ𝑘] and [𝑏ℓ, 𝑏ℓ]. Independence is implemented by taking Cartesian products
such as 𝒜 :=[𝑎, 𝑎] :=×1≤𝑘≤𝑛,1≤ℓ≤𝑚[𝑎ℓ𝑘, 𝑎ℓ𝑘] and ℬ :=[𝑏, 𝑏] :=×1≤ℓ≤𝑚[𝑏ℓ, 𝑏ℓ]. Then
we can model the uncertainty using joint vacuous coherent lower and upper
previsions 𝑃 and 𝑃 defined for every gamble 𝑓 on 𝒜 × ℬ by

𝑃 (𝑓) := min(𝑎,𝑏)∈𝒜×ℬ 𝑓(𝑎, 𝑏) and 𝑃 (𝑓) := max(𝑎,𝑏)∈𝒜×ℬ 𝑓(𝑎, 𝑏). (6)
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Intervals & Maximinity. In case the maximinity criterion is used, Equa-
tion (3) shows the quantity 𝑃 (𝐴𝑥 ≤ 𝐵) is important. By Definition (6), it is 1—
and 𝑥 is feasible—if and only if 𝑥 satisfies the constraints 𝑎𝑥 ≤ 𝑏 for all 𝑎 ≤ 𝑎 ≤ 𝑎
and 𝑏 ≤ 𝑏 ≤ 𝑏; otherwise it is 0. Because we may assume 𝑥 ≥ 0, componentwise,
the inequality’s left-hand side will be maximal and the right-hand side minimal
for 𝑎 = 𝑎 and 𝑏 = 𝑏; so if the constraints are satisfied for these values, they are
also satisfied for all the others: the feasible set is 𝑎𝑋 ≤ 𝑏 := {𝑥 ≥ 0 : 𝑎𝑥 ≤ 𝑏}.

For feasible 𝑥, Equation (3) shows that the lower prevision is equal to 𝑐𝑇𝑥—
the penalty 𝐿 falls out of the equation. So if the feasible set is nonempty, the
maximin solutions are the those that maximize this quantity:

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝐵, 𝑥 ≥ 0

with 𝑎 ≤ 𝐴 ≤ 𝑎, 𝑏 ≤ 𝐵 ≤ 𝑏
→

maximize 𝑐𝑇𝑥
subject to 𝑎𝑥 ≤ 𝑏,

𝑥 ≥ 0
The resulting optimization problem is then again a linear program. This is il-
lustrated in Figure 3. Dominance is automatically satisfied, because 𝐴𝑥 ≤ 𝐵 is
equal (to 𝒜 × ℬ) for all feasible 𝑥.

maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

with 𝐵2 ∈ [2/3, 4/3]

↓ maximinity

maximize 𝑐𝑇𝑥
subject to 𝑥 C 2/3

𝑥1

𝑥2

(1, 1
3 )

2
3

2
3

4
3

1
3

1
3

Figure 3. Example linear programming problem with interval uncertainty and max-
iminity: the feasible set is shaded dark gray; the convex solution set of optimization
vectors attaining the maximal lower expected—i.e., maximin—value 2 is a singleton in
this case, represented as a black dot.

If the feasible set is empty, all 𝑥 ≥ 0 are maximin solutions. But now dom-
inance does come into play; e.g., Dominance (iii) weeds out everything outside
of 𝑎𝑋 ≤ 𝑏, which is the outer feasible set.

Intervals & Maximality. In case the maximality criterion is used, Equation (4)
shows the quantity 𝑃 (𝐺𝑥 − 𝐺𝑧) is important. Definition (6) tells us that for
optimization vectors 𝑥 and 𝑧 we have 𝑃 (𝐺𝑥 − 𝐺𝑧) ≥ 0 if and only if there is a
pair (𝑎, 𝑏) in 𝒜 × ℬ such that 𝐺𝑥(𝑎, 𝑏) ≥ 𝐺𝑧(𝑎, 𝑏).

In Dominance (ii), we stated that we only considered problems for which the
outer feasible set 𝑎𝑋 ≤ 𝑏 is nonempty. As seen above, Dominance (iii) tells us
we can restrict attention to the outer feasible set when looking for maximal solu-
tions. Now, outer feasible 𝑥 that satisfy dominance (5) also satisfy Equation (4),
because the latter here reduces to min𝑎𝑧≤𝑏 max(𝐺𝑥 − 𝐺𝑧) ≥ 0.
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maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

with 𝐵2 ∈ [2/3, 4/3]

↓ maximality

maximize 0𝑥1 + 0𝑥2
subject to 𝑥 C 4/3

𝑐𝑇𝑥 ≥ max𝑧C2/3 𝑐𝑇𝑧,
𝑐𝑇𝑥 ≥ max1𝑧1+1𝑧2≤1𝑥1+1𝑥2 𝑐𝑇𝑧 (dominance)

𝑥1

𝑥2

(1, 1
3 )

2
3

2
3

4
3

1

1
3

Figure 4. Example linear programming problem with interval uncertainty and max-
imality: the feasible set is shaded dark gray and the 1-outer feasible set light gray;
the maximin solution corresponds to the leftmost black dot; the convex solution set of
outer feasible points with an upper expected value greater than or equal to the maximin
value is given by the hatched area; the maximal solutions satisfying dominance—given
by the thick black line—are the optimization vectors 𝑥 corresponding to the gam-
bles (2𝑥1 + 3𝑥2)𝐼𝑥C𝐵2 = (2𝑥1 + 3𝑥2)𝐼1𝑥1+1𝑥2≤𝐵2 undominated within this hatched set.

If moreover the feasible set 𝑎𝑍 ≤ 𝑏 is nonempty, then for outer feasible 𝑥—
with 𝑃 (𝐴𝑥 ≤ 𝐵) = 1—we have by sub-additivity of 𝑃 [11] and conjugacy that

min𝑎𝑧≤𝑏 𝑃 (𝐺𝑥 − 𝐺𝑧) ≤ 𝑃 (𝐺𝑥) − max𝑎𝑧≤𝑏 𝑃 (𝐺𝑧) = 𝑐𝑇𝑥 − max𝑎𝑧≤𝑏 𝑐𝑇𝑧.

So no 𝑥 with 𝑐𝑇𝑥 smaller than the value max𝑎𝑧≤𝑏 𝑐𝑇𝑧 of a maximin solution can
be maximal. Actually, this is already implied by Dominance (ii) and (iii), but
this criterion can be checked efficiently.

So 𝑥 is maximal if and only if it satisfies dominance and 𝑎𝑥 ≤ 𝑏, so maximality
for intervals can be expressed as

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝐵, 𝑥 ≥ 0

with 𝑎 ≤ 𝐴 ≤ 𝑎,
𝑏 ≤ 𝐵 ≤ 𝑏

→

maximize 0𝑇𝑥

subject to 𝑎𝑥 ≤ 𝑏, 𝑥 ≥ 0,
𝑐𝑇𝑥 ≥ max𝑎𝑧≤𝑏 𝑐𝑇𝑧,
dominance

The resulting optimization problem is a classical feasibility problem compounded
with a dominance problem. This case is illustrated in Figure 4.

6 Possibility Distributions

Assume that the uncertainty models for the 𝐴ℓ𝑘 and 𝐵ℓ are unimodal possi-
bility distributions 𝜋ℓ𝑘 and 𝜋ℓ. Independence is implemented with the usual—
least complex—definition of joint possibility: 𝜋𝐴(𝑎) := min1≤𝑘≤𝑛,1≤ℓ≤𝑚 𝜋ℓ𝑘(𝑎ℓ𝑘),
𝜋𝐵(𝑏) := min1≤ℓ≤𝑚 𝜋ℓ(𝑏ℓ), and 𝜋(𝑎, 𝑏) := min{𝜋𝐴(𝑎), 𝜋𝐵(𝑏)}. For any 𝐷 among
the 𝐴ℓ𝑘 and 𝐵ℓ, and 0 ≤ 𝑡 < 1, we define bounds 𝑑𝑡 := inf{𝑑 ∈ R : 𝜋(𝑑) > 𝑡} and
𝑑𝑡 :=sup{𝑑 ∈ R : 𝜋(𝑑) > 𝑡}. We write 𝑎𝑡, 𝑎𝑡, 𝑏𝑡, and 𝑏𝑡 for the matrices and vectors
with respective components 𝑎ℓ𝑘𝑡

, 𝑎ℓ𝑘𝑡
, 𝑏ℓ𝑡

, and 𝑏ℓ𝑡
. Then 𝒜×ℬ :=[𝑎0, 𝑎0]× [𝑏0, 𝑏0]

is (the closure of) the set of possible realizations of (𝐴, 𝐵).
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We can model the uncertainty using a joint upper probability 𝑃 defined for
every subset ℰ of 𝒜 × ℬ by 𝑃 (ℰ) := sup(𝑎,𝑏)∈ℰ 𝜋(𝑎, 𝑏)—lower probabilities follow
by conjugacy and lower and upper previsions by Choquet integration [7].

Possibility Distributions & Maximinity. By Equation (3), we seek to max-
imize 𝑃 (𝐺𝑥) = 𝐿 + (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵) = 𝐿 + (𝑐𝑇𝑥 − 𝐿)

(︀
1 − 𝑃 (𝐴𝑥 � 𝐵)

)︀
. With

every 𝑥 there corresponds a unique value for 𝑃 (𝐴𝑥 � 𝐵), so this maximization
can be done in a nested manner:

max𝑥≥0 𝑃 (𝐺𝑥) = 𝐿 + max𝑡∈[0,1](1 − 𝑡) max𝑥≥0{𝑐𝑇𝑥 − 𝐿 : 𝑃 (𝐴𝑥 � 𝐵) = 𝑡}
= 𝐿 + max𝑡∈[0,1](1 − 𝑡) max𝑥≥0{𝑐𝑇𝑥 − 𝐿 : 𝑃 (𝐴𝑥 � 𝐵) ≤ 𝑡},

where the second equality follows from the fact that for 𝑃 (𝐴𝑥 � 𝐵) = 𝑠 < 𝑡
with fixed 𝑥 and 𝑡 it holds that (1 − 𝑠)(𝑐𝑇𝑥 − 𝐿) ≥ (1 − 𝑡)(𝑐𝑇𝑥 − 𝐿).

Next we show that 𝑃 (𝐴𝑥 � 𝐵) = 𝑟 := inf{0 ≤ 𝜏 < 1 : 𝑎𝜏 𝑥 ≤ 𝑏𝜏 }: We have
𝑎𝑥 ≤ 𝑏 for 𝑎 and 𝑏 such that 𝜋(𝑎, 𝑏) > 𝑟, hence 𝑃 (𝐴𝑥 � 𝐵) ≤ 𝑟. For any 𝑠 < 𝑟
we have 𝑎𝑠𝑥 � 𝑏𝑠, hence 𝑃 (𝐴𝑥 � 𝐵) = sup(𝑎,𝑏)∈𝒜×ℬ{𝜋(𝑎, 𝑏) : 𝑎𝑥 � 𝑏} ≥ 𝑟. It
follows that 𝑃 (𝐴𝑥 � 𝐵) ≤ 𝑡 if and only if 𝑎𝑡𝑥 ≤ 𝑏𝑡.

Hence the problem becomes
maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝐵,

𝑥 ≥ 0
with given 𝜋

→ maximize 𝐿 + (1 − 𝑡)
(︃ maximize 𝑐𝑇𝑥 − 𝐿

subject to 𝑎𝑡𝑥 ≤ 𝑏𝑡,
𝑥 ≥ 0

)︃
subject to 0 ≤ 𝑡 < 1

So we maximize over all 0 ≤ 𝑡 ≤ 1, where for any particular 𝑡 < 1, we just
need to solve a single linear program. This maximization over 𝑡 can be done
using, e.g., a bisection algorithm. Dominance is again automatically satisfied,
now because 𝐴𝑥 ≤ 𝐵 is equal (to 𝑎𝑡𝑥 ≤ 𝑏𝑡) for all (1 − 𝑡)-inner feasible 𝑥. This
case is illustrated in Figure 5.

maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

with 𝜋2(𝑏) =

⎧⎨⎩
1, 𝑏 = 1,
1/5, 𝑏 ∈ [2/3, 4/3] ∖ {1},

0, elsewhere

↓ maximinity (𝐿 = 0)

maximize (1 − 𝑡)

(︁ maximize 𝑐𝑇𝑥
subject to 𝑥 C 𝑏2𝑡

)︁
subject to 𝑡 ∈ {0, 1/5}

𝑥1

𝑥2

( 1
2 , 1

2 )
(1, 1

3 )

2
3

2
3

1 4
3

1
3

1
3

Figure 5. Example linear programming problem with possibilistic uncertainty and
maximinity: the feasible set is shaded dark gray and the 2/3-inner feasible set gray; the
solution set of optimization vectors attaining the maximin value 2 is given using black
dots.
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Possibility Distributions & Maximality. We again start by focusing on the
core of Equation (4), which can be written as [7]:

𝑃 (𝐺𝑥 − 𝐺𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(𝑐𝑇𝑧 − 𝐿) + (𝑐𝑇𝑥 − 𝑐𝑇𝑧)𝑃 (𝐴𝑥 ≤ 𝐵)
+ (𝑐𝑇𝑧 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵 ∨ 𝐴𝑧 � 𝐵)
+ (𝑐𝑇𝑧 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵 ∧ 𝐴𝑧 � 𝐵), 𝑐𝑇𝑥 ≥ 𝑐𝑇𝑧,

−(𝑐𝑇𝑧 − 𝐿) − (𝑐𝑇𝑥 − 𝑐𝑇𝑧)𝑃 (𝐴𝑧 � 𝐵)
+ (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵 ∨ 𝐴𝑧 � 𝐵)
+ (𝑐𝑇𝑥 − 𝐿)𝑃 (𝐴𝑥 ≤ 𝐵 ∧ 𝐴𝑧 � 𝐵), 𝑐𝑇𝑥 ≤ 𝑐𝑇𝑧.

In this expression, only the factor 𝑃 (𝐴𝑥 ≤ 𝐵 ∧ 𝐴𝑧 � 𝐵) is hard to compute for
given 𝑥 and 𝑧. However, to determine whether or not 𝑧 dominates 𝑥, we only
need to find out whether 𝑃 (𝐺𝑥 − 𝐺𝑧) < 0 or not, so we do not need to compute
the factor’s value, but only whether it is larger than some critical value that
is a function of the (easily computable) rest of the expression. At the current
state of our investigations, this comparison requires us to solve at most 𝑚 linear
programs per (𝑥, 𝑧)-pair.

We have not yet found a way to exploit this result to derive an explicit op-
timization problem—such as the feasibility problem for the interval case—that
has the undominated elements as its solution. So currently we use an approxima-
tion approach for dealing with this kind of problem: we discretize the space of
optimization vectors and perform pairwise comparisons between points in this
grid; this approach is infeasible for problems with non-small 𝑛.

This case is illustrated in Figure 6 with an example we can solve exactly.

maximize 𝑐𝑇𝑥 := 2𝑥1 + 3𝑥2
subject to 𝑥 C 𝐵2

with 𝜋2(𝑏) =

⎧⎨⎩
1, 𝑏 = 1,
9/10, 𝑏 ∈ [2/3, 4/3] ∖ {1},

0, elsewhere

↓ maximality (𝐿 = 0)

maximize 0𝑥1 + 0𝑥2
either subject to 𝑥 C 1, 𝑥 ̸C 2/3

but not 𝑐𝑇𝑥 < max1𝑧1+1𝑧2≤1𝑥1+1𝑥2 𝑐𝑇𝑧
or subject to 𝑥 C 4/3, 𝑥 ̸C 1,

𝑐𝑇𝑥 ≥ max1𝑧1+1𝑧2≤1𝑥1+1𝑥2 𝑐𝑇𝑧 (dominance)
but not 𝑐𝑇𝑥 < 10/9 max𝑧C1 𝑐𝑇𝑧 (cf. gray-filled dot)

𝑥1

𝑥2

(1, 1
3 )

2
3

2
3

11
3

1
3

10
9

25
18

( 5
9 , 5

9 )

Figure 6. Example linear programming problem with possibilistic uncertainty and
maximality—note the modified possibility distribution: the inner feasible set is shaded
dark gray, (the infeasible part of) the 1-outer feasible set is shaded gray, the 9/10-outer
feasible set is shaded light gray; the solution set of is drawn using thick black lines and
the hatched area again consists of optimization vectors that are nonmaximal because
they are dominated (cf. Figure 4); the solution set consists of a union of intersections
of convex sets of optimization vectors.
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7 Conclusions

We have used simple two-valued utility functions. Our approach is in principle
compatible with more complex utility functions. For example, in this paper,
we only deal with uncertainty in the constraints. Uncertainty in the objective
function could in principle be taken into account directly in the utility function
of the decision problem. To keep the computational complexity of the problems
we study still somewhat manageable, we have refrained from considering more
complex utility functions—but it is an obvious avenue for further research.

Currently, the two main new contributions of our research, as presented
in this paper, are the formulation of the feasibility problem for the interval-
maximality case and the formulation of the efficiently solvable nested optimiza-
tion problem for the possibility-maximinity case. We have bumped our head
discovering that finding an efficient approach for determining dominance is a
worthy goal. But this should not divert all our attention away from adding other
types of uncertainty models—such as linear-vacuous previsions, the next step up
in complexity—to the list of those we can efficiently find maximin solutions for.
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