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Abstract Drawing inferences from general lower probabilities on finite possibility
spaces usually involves solving linear programming problems. For some applica-
tions this may be too computationally demanding. Some special classes of lower
probabilities allow for using computationally less demanding techniques. One such
class is formed by the completely monotone lower probabilities, for which infer-
ences can be drawn efficiently once their Möbius transform has been calculated. One
option is therefore to draw approximate inferences by using a completely monotone
approximation to a general lower probability; this must be an outer approximation
to avoid drawing inferences that are not implied by the approximated lower prob-
ability. In this paper, we discuss existing and new algorithms for performing this
approximation, discuss their relative strengths and weaknesses, and illustrate how
each one works and performs.
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1 Introduction

In the theory of coherent lower previsions—or, more colloquially, of imprecise
probabilities—the procedure of natural extension is the basic technique for drawing
inferences [11, §3.1]. In a finitary setting, i.e., one with a finite possibility space Ω

and in which the lower prevision P is assessed for a finite collection of gambles
(random variables) K ⊆ RΩ , calculating the natural extension EP f for a gamble f
in RΩ corresponds to solving a linear programming (LP) problem:

EP f := max
{

α ∈ R : f −α ≥ ∑g∈K λg · (g−Pg),λ ∈ RK
≥0
}
. (1)
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In applications where K is large or where the natural extension needs to be calcu-
lated for a large number of gambles, such LP problems may be too computationally
demanding. But natural extension preserves dominance: if P∗ ≤ P then EP∗ ≤ EP.

So first we restrict K and only consider lower previsions P that are defined on
the set of (indicators of) events; i.e., we only consider lower probabilities P defined
on the power set 2Ω . Now, for 2-monotone lower probabilities P∗, which form a sub-
class of the coherent lower probabilities, the natural extension EP∗ can be calculated
more efficiently using Choquet integration [see, e.g., 11, §3.2.4]:

EP∗ f = (C)
∫

f dP∗ := min f +
∫ max f

min f P∗{ω ∈Ω : f ω ≥ t}dt, (2)

So if we can find a 2-monotone outer approximation P∗ to P, i.e., such that P∗A≤PA
for all events A⊆Ω , we can efficiently calculate the outer approximation EP∗ to EP.

How can we go about this? Every coherent lower prevision P can be written as a
convex combination of extreme coherent lower previsions [7] that is not-necessarily
unique [e.g., 6, §2.3.3, ¶4]; in the finitary case, the set E c(K ) of extreme coherent
lower previsions on K is finite. So P = ∑Q∈E c(K )λQ ·Q, where λ : E c(K )→
[0,1] is a function that generates coefficients of a convex E c(K )-decomposition
of P. The same holds for 2-monotone lower probabilities, but with a different set of
extreme members E 2(Ω) [8, 6]. The idea is to find a ν : E 2(Ω)→ [0,1] such that
P∗ := ∑Q∈E 2(Ω)νQ ·Q is an—in some sense—good outer approximation to P.

It is impractical to consider all elements of E 2(Ω): finding this set is computa-
tionally very demanding and with increasing |Ω | it quickly becomes very large [8,
§4]. In this paper, our strategy is to only retain the subclass E ∞(Ω) of vacuous lower
probabilities: each such lower prevision essentially corresponds to an assessment
that a given event A of Ω occurs; the corresponding natural extension is given by
EA f := minω∈A f ω . Lower probabilities P∗ that can be written as a convex combi-
nation of vacuous lower probabilities are called completely monotone. The decom-
position of such a lower probability, i.e., the coefficient function ν : 2Ω → [0,1], is
unique and determines it as follows:

P∗A = ∑B⊆A νB, EP∗ f = ∑B⊆Ω νB ·EB f = ∑B⊆Ω νB ·minω∈B f ω. (3)

The left-hand equation is called Möbius inversion; the right-hand one is an alterna-
tive to Choquet integration for calculating the natural extension.

Mathematically, completely monotone lower probabilities coincide with the be-
lief functions of Dempster–Shafer theory [4, 9]. From this theory, we know that the
coefficients of the decomposition—which we call basic belief mass assignments in
this paper—can be obtained by using the Möbius transform of P∗; i.e., the coeffi-
cient of EA is

νA = ∑B⊆A(−1)|A\B| ·P∗B = P∗A−∑B⊂A νB, (4)

where the last expression shows how these coefficients can be calculated recursively.
Obviously, P∗ must be defined for all events to calculate these coefficients; if nec-
essary, one should extend it to all indicator functions first to obtain the lower prob-
ability on all events.
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In this paper, we assume a lower probability P is given that is defined on all
events. We discuss a number of algorithms that allow us to obtain a basic belief mass
assignment function ν that determines—via Equation (3)—a completely monotone
lower probability P∗ that is an outer approximation to P, i.e., P∗ ≤ P. The reason we
focus on outer approximations is that they are conservative in the sense that they do
not lead to inferences unwarranted by the approximated lower probability. For the
algorithms to work, it is sufficient that P satisfies ∑ω∈Ω P{ω} ≤ 1, is nonnegative
(P≥ 0), monotone (B⊆ A⇒ PB≤ PA), and normed (P /0 = 0 and PΩ = 1), all four
of which we assume to be the case.

2 Completely monotone outer approximation algorithms

We are going to discuss four algorithms—one trivial new one, two from the litera-
ture, and one substantive new one—that fall into three classes: the first one creates a
linear-vacuous mixture, the second one reduces the problem to an LP problem, and
the last two are based on modifications of the Möbius transformation and are more
heuristic in nature. (All algorithms have been implemented in Troffaes’s improb
software package/framework [10].) But before jumping into this material, we dis-
cuss a useful preprocessing step and introduce the lower probabilities that are used
to illustrate (the results) of the techniques.

First the preprocessing step: we mentioned that the decomposition into extreme
coherent lower previsions of a coherent lower prevision P is in general non-unique.
However, the coefficients λ{ω} of the degenerate lower previsions—i.e., vacuous
lower previsions relative to singletons {ω} of Ω—are unique [7, Prop. 1], so we
can write any coherent lower probability as a linear-imprecise mixture:

PA= κ ·∑ω∈A pω+(1−κ) ·RA, EP f = κ ·∑ω∈Ω pω · f ω+(1−κ) ·ER f , (5)

where κ := ∑ω∈Ω λ{ω} and pω := λ{ω}/κ , which allows us to solve for the im-
precise part R. This is a coherent lower probability whose lower probability on sin-
gletons is zero. (The second equation then follows from [11, §3.4.1].) In case P is
not coherent, R may end up with negative values, but we may infer from the zero val-
ues of R on singletons that these may be set to zero. Given that linear previsions are
completely monotone, it makes sense to separate out the linear part—represented
by the probability mass function p—and only approximate the imprecise part.

We use some example lower probabilities to illustrate the algorithms. All have
Ω = {a,b,c,d}: a cardinality of four allows the lower probabilities to be complex
enough to be interesting without resulting in unending lists of numbers. (Also, for
|Ω | < 4, all lower probabilities are probability intervals and therefore 2-monotone
[2, Prop. 5].) The first one in Table 1 is from the literature [5, Ex. 2], for which
we also give the linear-imprecise decomposition; the second and third ones in Ta-
ble 2 are especially chosen extreme coherent lower probabilities [8, 6, App. A] that
highlight some of the algorithms’ features and consist of an imprecise part only.
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Table 1 A lower probability P, its linear-imprecise decomposition (p,R,κ = 0.737), the 2-
monotone probability interval outer approximation RPI of R (generated by efficient natural ex-
tension from [R{ω},R{ω}= 1−R(Ω \{ω})]ω∈Ω [cf. 2, particularly Prop. 4]), the Möbius trans-
form ρ of R, and six completely monotone outer approximations of R: the linear-vacuous one RLV;
two optimal ones, RLPDS using a dual simplex solver and RLPCC using a criss-cross solver; two
IRM-approximations, RIRM using the lexicographic order and πRIRM the inverse order; the IMRM-
approximation RIMRM. Negative values in the Möbius transform ρ of R are highlighted with a gray
background. Approximation values that differ from the approximated values of R are in boldface.
The last row contains the sum-norm-differences between R and the approximations. The number
of significant digits used has been chosen to facilitate comparisons and verification.

Event P p R ρ RLV RLPDS RLPCC RIRM πRIRM RIMRM RPI

a 0.0895 0.122
b 0.2743 0.372

c 0.2668 0.362
d 0.1063 0.144

a b 0.3947 0.117 0.117 0 0 0.117 0.046 0.091 0.066 0
a c 0.4506 0.358 0.358 0 0.196 0.079 0.185 0.193 0.211 0
a d 0.2959 0.381 0.381 0 0.352 0.352 0.242 0.249 0.244 0.129

b c 0.5837 0.162 0.162 0 0.162 0.162 0.074 0.074 0.082 0
b d 0.4835 0.391 0.391 0 0.227 0.110 0.219 0.216 0.227 0

c d 0.4079 0.132 0.132 0 0.002 0.119 0.099 0.051 0.081 0
a b c 0.7248 0.358 −0.280 0 0.358 0.358 0.305 0.358 0.358 0.358
a b d 0.6224 0.579 −0.310 0 0.579 0.579 0.507 0.556 0.579 0.579
a c d 0.6072 0.550 −0.322 0 0.550 0.550 0.526 0.493 0.550 0.550

b c d 0.7502 0.391 −0.295 0 0.391 0.391 0.391 0.341 0.391 0.391
a b c d 1 1 0.664 1 1 1 1 1 1 1

‖R−R∗‖1 3.419 0.603 0.603 0.827 0.797 0.631 1.413

Table 2 Two lower probabilities P—the one on the left is permutation invariant [cf., e.g., 6,
§2.2.6]—with their Möbius transforms µ and IMRM-approximations PIMRM. On the left more-
over two other completely monotone outer approximations, an optimal one PLP and an IRM-
approximation PIRM. On the right moreover the Möbius transform ν6 of the IMRM-approximation
and two intermediate basic belief mass assignments (ν3 and ν5) used in its construction. (N.B.: for
this lower probability, we have ‖P−PLP‖1 = 1/2, ‖P−PIRM‖1 = 3/4.) Other table elements and
stylings have the same meaning as in Table 1.

Event P µ PLP PIRM PIMRM P µ ν3 ν5 ν6 PIMRM

a b 1/3 1/3 0 1/10 1/6 1/2 1/2 1/2 1/4 1/4 1/4
a c 1/3 1/3 1/6 0.95/8 1/6 1/4 1/4 1/4 1/8 1/8 1/8
a d 1/3 1/3 1/3 1/7 1/6 1/4 1/4 1/4 1/8 1/8 1/8

b c 1/3 1/3 1/3 0.96/7 1/6 1/4 1/4 1/4 1/8 1/8 1/8
b d 1/3 1/3 1/6 0.99/6 1/6 0 0 0 0 0 0

c d 1/3 1/3 0 0.98/5 1/6 0 0 0 0 0 0
a b c 1/2 −1/2 1/2 1.07/3 1/2 1/2 −1/2 −1/2 0 0 1/2
a b d 1/2 −1/2 1/2 0.82/2 1/2 3/4 0 0 3/8 9/32 21/32
a c d 1/2 −1/2 1/2 0.91/2 1/2 1/4 −1/4 −1/4 0 0 1/4

b c d 1/2 −1/2 1/2 1/2 1/2 1/4 0 0 1/8 3/32 7/32
a b c d 1 0 1 1 1 1 1/2 −1/8 0 1

‖P−P∗‖1 1 99/70 1 3/4
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In the tables, we have also given the Möbius transform µ of each of these lower
probabilities—or the transform ρ of their imprecise part—by applying Equation (4).
As is the case for all lower probabilities that are not completely monotone, some
of the basic belief mass assignments so obtained are negative, but they still sum
up to one [3, 9]. The algorithms we discuss all essentially construct a nonnegative
basic belief mass assignment function which can be seen as resulting from shifting
positive mass up in the poset of events ordered by inclusion (or shifting negative
mass down) to compensate the negative mass assignments. This mass shifting is
also the basic idea behind the last two algorithms.

Linear-vacuous approximation The first algorithm is trivial: it consists in replac-
ing a lower probability’s imprecise part by the vacuous lower probability, which
is identically zero except in Ω , where it is 1. In terms of mass shifts, all mass of
non-singletons is shifted up to the event poset’s top Ω .

Table 1 contains a—due to the triviality—not very interesting illustration.

Approximation via optimization The second algorithm is based on the formula-
tion of the problem as an optimization problem: we wish to find a nonnegative basic
belief mass assignment function ν such that its Möbius inverse PLP minimizes some
distance to the approximated lower probability P. We can force PLP to be an outer
approximation by adding constraints that express its dominance by P. By choosing
the distance to be a linear function of ν’s components, the optimization problem
becomes an LP problem [1, §7]; we choose the sum-norm-distance:

ν = argmin
{
‖P−PLP‖1 : PLP ≤ P and PLP is completely monotone

}
(6)

= argmin
{

∑A⊆Ω |PA−PLPA| : PLP ≤ P and PLP is completely monotone
}

= argmax
{

∑A⊆Ω PLPA : PLP ≤ P and PLP is completely monotone
}

= argmax
{

∑A⊆Ω ∑B⊆A νB : ∀A⊆Ω (∑B⊆A νB≤ PA) and ν ≥ 0,∑B⊆Ω νB = 1
}

= argmax
{

∑B⊆Ω 2|Ω\B|νB : ∀A⊆Ω (∑B⊆A νB≤ PA) and ν ≥ 0,∑B⊆Ω νB = 1
}
,

(7)

where 2|Ω\B| is the number of events A that contain B. The third equality follows
from taking into account the dominance constraints; the fourth from making the
dependence on ν explicit using Equation (4). The linear-vacuous approximation
shows that this linear program is feasible.

The results of this optimization approach are given for the lower probability in
Table 1 and the one on the left in Table 2. In Table 1, two differing ‘optimal’ outer
approximations are given, resulting from using different LP solvers. The optimal
outer approximation given for the permutation invariant lower probability in Table 2
on the left is not permutation invariant itself. Both are due to the fact that in general
there is no unique optimal solution and that solvers return the first one reached,
which for the typical (non-interior-point) methods used lies on the border of the
convex set of solutions.

The sum-norm distance can also be used as a quality criterion—one that obvi-
ously does not take symmetry aspects into account—for other approximation tech-
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niques. It has therefore also been calculated and included for the other approxima-
tions in Table 1 and 2; ‖P−PLP‖1 and ‖P−PLV‖1 provide lower and upper bounds.

Iterative rescaling method The Iterative Rescaling Method or IRM [5] builds on
the recursive Möbius transform formula in Equation (4), interrupting it to shift mass
whenever negative mass assignments are encountered for some event.

Algorithm 1: IRM(Ω ,P) := PIRM

Form a sequence A of length 2|Ω | by ordering all events in 2Ω by increasing
cardinality and arbitrarily for events of equal cardinality and set ν /0 := P /0 = 0
for i := 1 to 2|Ω |−1 do νAi := PAi−∑B⊂Ai νB

if νAi < 0 then (`,α) := MassBasin(Ai,ν)

foreach B⊂ Ai : |B| ≥ ` do νB := α+νAi
α
·νB

νAi := 0

return the Möbius inverse PIRM of ν

In the if-block, the negative mass νAi is distributed proportionally to its subevents
of a for compensation lowest needed cardinality and up; i.e.,

` := max{k < |Ai| : ∑B⊂A:|B|≥k νB =: αk > νAi}, α := α`.

For clarity, we have separated out the algorithm that calculates these parameters:

Algorithm 2: MassBasin(A,ν) := (`,α)

Set ` := |A| and α := 0
while α <−νA do ` := `−1 and α := α +∑B⊂A:|B|=` νB
return the (lowest needed) cardinality ` and the compensation mass α

The results of the IRM-algorithm are given for the lower probability in Table 1
and the one on the left in Table 2. In Table 1, two differing outer approximations are
given, resulting from using different ‘arbitrary’ orderings of the events of equal car-
dinality. Using the sum-norm criterion, we see that the quality of the approximation
depends on the order chosen. Also, the outer approximation given for the permu-
tation invariant lower probability in Table 2 on the left is not permutation invariant
itself, reflecting the impact of the arbitrary order.

Furthermore, it can be seen in the Tables that for events of a cardinality for
which the optimization approximation is always exact, this is not so for the IRM-
approximation; there only the last such event of the arbitrary order is exact. This is
due to the fact that the IRM-algorithm does not backtrack to recalculate the mass as-
signments for an event after rescaling some of its subevents due to negative masses
encountered for subsequent events.

Iterative minimal rescaling method Inspired by the IRM, we have designed an
approximation algorithm that avoids its defects mentioned above, at the cost of in-
creased complexity. Furthermore, our algorithm is permutation-invariant, so it im-
proves on the LP approach as well, in that regard.
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The algorithm is still based on the recursive Möbius transform formula in Equa-
tion (4), but the rescaling approach is a bit more involved than with the IRM and
gives rise to a higher number of these recursion calculations:

Algorithm 3: IMRM(Ω ,P) := PIMRM

Set ν /0 := P /0 = 0 and k := 1
while k ≤ |Ω | do A := /0

foreach A⊆Ω : |A|= k do νA := PA−∑B⊂A νB
A := {A⊆Ω : |A|= k∧νA < 0}
if A = /0 then k := k+1
else foreach A ∈A do (`A,αA) := MassBasin(A,ν)

` := minA∈A `A and B := {A ∈A : `A = `}
foreach A ∈B do βA := ∑B⊂A:|B|=` νB
foreach B ∈

⋃
A∈B 2A : |B|= ` do νB := maxA∈B:B⊂A

αA+νA
βA
·νB

k := `+1

return the Möbius inverse PIMRM of ν

Per cardinality k, all basic belief mass assessments are calculated before doing any
rescaling due to negative masses encountered for the events in A . To limit the mass
loss for events of lowest needed cardinality `—i.e., those most heavily penalized by
the sum-norm criterion—, only their masses are rescaled during that iteration of the
while-loop, which is the reason to restrict attention to B. For a single event A of B,
the mass loss for its cardinality-` subevents is limited by only shifting that mass
down which cannot be compensated higher up, which explains the scaling factor βA
used. We avoid overcompensation of negative mass in one element of B due to a
bigger deficit in another by using the largest scaling factor available, which leads
to a minimal rescaling. This last point is what lead us to name the algorithm the
Iterative Minimal Rescaling Method or IMRM. In general, the IMRM will not be as
good as the optimization approach in terms of the sum-norm criterion: the mass is
still shifted proportionally, which is not necessarily optimal.

The lower probability PIMRM obtained is indeed completely monotone, because
for the basic belief mass assignment function we have ν /0 = 0 from the start, νA≥ 0
for all events such that |A| < k at the end of each iteration of the while-loop, and
νΩ = PΩ −∑B⊂Ω νB = 1−∑B⊂Ω νB at the end of the last iteration. It is an outer
approximation because the recursion formula used tries to make PIMRMA equal to
PA for all A⊆Ω ; subsequent rescalings can only lower this value.

The results of the IMRM-algorithm are given for the lower probability in Table 1
and both in Table 2. The positive impact of the algorithm’s permutation invariance
is especially clear for the left lower probability of Table 2. The algorithm itself is
illustrated on Table 2’s right side; there ν is given as it exists at the moment A = /0 is
checked for the third, fifth, and sixth—final—iteration of the while loop; the impact
of negative mass values on subsequent iterates is the prime point of interest here.
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3 Conclusion

We have introduced and illustrated the linear-imprecise decomposition of lower
probabilities, and the linear-vacuous and IMRM-algorithms for generating com-
pletely monotone outer approximations to lower probabilities. We have compared
these to algorithms in the literature; permutation invariance is their main advantage.

One thing that still needs to be done is a complexity and parallelizability analysis
to get a view of the relative computational burden of each of the algorithms dis-
cussed. Also interesting to investigate is the use of other objective functions in the
optimization approach—e.g., using other norms, engendering nonlinear convex op-
timization problems—; this could lead to uniqueness of the solution and therewith
permutation invariance. Both would allow for a more informed choice between the
different possible completely monotone outer approximation algorithms.
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tone capacities through the use of Möbius inversion. Math. Social Sci. 17, 263–283 (1989)
doi: 10.1016/0165-4896(89)90056-5

4. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math.
Stat. 38, 325–339 (1967) doi: 10.1214/aoms/1177698950

5. Hall, J.W., Lawry, J.: Generation, combination and extension of random set approximations
to coherent lower and upper probabilities. Reliab. Eng. Syst. Safety 85, 89–101 (2004) doi:
10.1016/j.ress.2004.03.005

6. Quaeghebeur, E.: Learning from samples using coherent lower previsions. PhD thesis, Ghent
University (2009) url: http://hdl.handle.net/1854/LU-495650

7. Quaeghebeur, E.: Characterizing the set of coherent lower previsions with a finite number of
constraints or vertices. In: Spirtes, P., Grünwald, P. (eds) Proceedings of UAI 2010, 466–473,
AUAI Press (2010) url: http://hdl.handle.net/1854/LU-984156

8. Quaeghebeur, E., De Cooman, G.: Extreme lower probabilities. Fuzzy Sets and Systems 159,
2163–2175 (2008) doi: 10.1016/j.fss.2007.11.020 url: http://hdl.handle.net/1854/11713

9. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
10. Troffaes, M., Quaeghebeur, E.: improb: A python module for working with impre-

cise probabilities (2011) url: https://github.com/equaeghe/improb, fork of https://github.com/
mcmtroffaes/improb. Latest public release at http://packages.python.org/improb/

11. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall (1991)


