
1 Context
Agent faced with uncertainty;

Possibility space Ω ,
e.g., set of experimental outcomes;

Gambles real-valued functions f on Ω ;
interest in a linear space of gambles L.

Example format used for
illustrations: Ω ∶= {ω,ϖ},
and L is the linear space
of all gambles on Ω .

f

f (ω)
f (ϖ)

Gamble set operations & hulls
Let f ∈L and K,K′ ⊆L, then:

• negation −K ∶= {−g ∶ g ∈K},
• ray f̄ ∶= {λ f ∶ λ ∈R>0},
• positive scalar hull K ∶=⋃ f ∈K f̄ ,
• Minkowski addition:K+K′ ∶= {g+h ∶ g ∈K,h ∈K′},
• positive linear hull

posiK ∶=⋃{∑g∈K′′ ḡ ∶K′′ ⊆K, ∣K′′∣ ∈N}

2 Accepting & rejecting
The agent gives an assessment by
making statements about gambles f :

Accepting (⊕) implies a commitment:

(i) outcome ω ∈Ω is determined,
(ii) he receives the payoff f (ω).

Rejecting (⊖) implies that he consid-
ers accepting f unreasonable;
this is relevant when combining
assessments.

An assessment is a pair A ∶= ⟨A⪰;A≺⟩
in A ∶= 2L × 2L of sets of acceptable
respectively dispreferred gambles.

Unresolved gambles belong to
neither category: A⌣ ∶= (A⪰∪A≺)c;

Confusing gambles belong to both
categories: A�∶=A⪰∩A≺.
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No confusion is present in an assessment A
if and only if A�=∅.

The set of assessments without confusion is A.

Indifferent gambles are acceptable and have
an acceptable negation: A≃ ∶= −A⪰∩A⪰;

Favorable gambles are acceptable and have
a dispreferred negation: A≻ ∶= −A≺∩A⪰;

Incomparable gambles are unresolved and have
an unresolved negation: A≍ ∶= −A⌣∩A⌣.

3 Deductive closure
We assume gamble payoffs are
expressed in a linear precise utility.
This implies:

Positive scaling If f is acceptable,
then all gambles in the ray f̄ are
acceptable;

Combination If f and g are accept-
able, then f +g is acceptable.

So we can extend an assessment A:

Deductive extension

extDA ∶= ⟨posiA⪰;A≺⟩;
extension legend:
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acceptable
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Deductive closure of an assessment D

if and only if
extDD =D or posiD⪰ =D⪰.

The deductively closed assessments form the set D ⊂A;
those without confusion form the set D ∶=D∩A.

Deductively closable assessments are those
that remain without confusion; they form
the set A+ ∶= {A ∈A ∶ extDA ∈D}.

Removing confusion from an assessment D in D can
be done automatically: both extD⟨D⪰ ∖D�;D≺ ∖D�⟩
and ⟨D⪰;D≺∖D�⟩ belong to D.

4 No limbo
Let D in D and f in D⌣, then without
increasing confusion f can

• always be rejected,

• can be accepted if and only if
f ∉ inaD ∶= (D≺∖D⪰)−(D⪰∪{0}).

Limbo is the set of unresolved
gambles (inaD)∖D≺
that cannot additionally be accept-
able without increasing confusion
under deductive closure.

Reckoning extension

extMD ∶= ⟨D⪰;D≺∪ inaD⟩;
extension legend:
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No limbo is present in a deductively closed assessmentM if and only if
extMM =M or inaM ⊆M≺.

ModelsM are deductively closed assessments
without limbo.

Models form the set M ⊂ D; those without confusion
form the set M ∶=M∩A.

5 Model properties
Given a modelM in M, then

• inaM =M≺−(M⪰∪{0}),
•M≺ =M≺ and posiM≻ =M≻,
•M≻+M⪰ =M≻.

6 Set relations & operations
‘Less committal than’-relation ⊂ is an assessment re-

lation derived from inclusion: A ⊂ B⇔A ⊆ B∧A ≠ B
and A ⊆ B⇔A⪰ ⊆ B⪰∧A≺ ⊆ B≺.
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Assessment union ⋃ is componentwise set union;

Assessment intersection ⋂ is componentwise
set intersection;

The sets A, A+, D, D, and M are closed under arbitrary
non-empty intersections, but M is not, as is attested by
the counterexample below:
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7 Order-theoretic results
The ‘less committal than or equal’-
relation ⊆ engenders a partial
ordering of the assessments.

Dominating assessments in a set
of assessments B ⊆A:

BA ∶= {B ∈B ∶A ⊆ B}.
(B� =B with � ∶= ⟨∅;∅⟩)

Maximal assessments B̂ are the
undominated ones in B;

• Â = D̂ = M̂ = {⊺} with ⊺ ∶= ⟨L;L⟩,
• Â = {⟨K;L∖K⟩ ∶K ⊆L}, and
• M̂ = D̂ = Â+ = Â∩A+.
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Intersection structures is what the posets (A,⊆),(A,⊆), (A+,⊆), (D,⊆), (D,⊆), and (M,⊆) are,
because the sets are closed under intersection.

Closure operators are associated to each intersection
structure (B,⊆) by clBA ∶=⋂BA with ⋂∅ = ⊺;

• clB = id on B∪{⊺},
• clD = extD and clA returns ⊺ outside of A,
• clA+ = id, clD = extD, and clM = extM○extD on A+

and it returns ⊺ elsewhere,

Complete lattices is what the posets (A,⊆),(A∪{⊺},⊆),(A+ ∪ {⊺},⊆),(D,⊆),(D ∪ {⊺},⊆),
and (M ∪ {⊺},⊆) become with ⋂ as the infimum
operator and clB○⋃ as the supremum operator;

• deductive union ⊎ ∶= clD○⋃,
• reckoning union 2 ∶= clM○⋃.

8 Dominating models
The agent specifies an assessment A; if it is an
element of A+, then it can be extended to a model
without confusion:M ∶= clMA = extM(extDA) ∈M.
Therefore knowing whether A is in A+ is important.

Characterization of A+ using the set of dominating
maximal elements M̂A: A ∈A+⇔ M̂A ≠∅.

This means that if all assessments in some family are
dominated by a common model in M, then their reckon-
ing union is a model in M.

Inferences can be drawn from any assessment A as
well using M̂A:

clMA =⋂M̂A.
Our models inM are compatible with AGM-style belief
change and revision.

9 Smallest models
Some a priori assumptions can be captured by positing
a smallest model S in M that replaces �: so we work in
MS instead of M.
(All the results above remain valid, mutatis mutandis.)

Natural extension of an assessment A is its reckoning
union with the smallest model: AFS.

Coherent modelsM coincide with their natural
extension: MFS =M or S ⊆M.

11 Partitions
All modelsM in M partition gamble
space L into nine elements—some possi-
bly empty—depending on whether a gamble
and its negation are acceptable, dispre-
ferred, or neither.
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The model is maximal if and only if the
more grayish partition elements are empty.
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The framework can be simplified by replac-
ing rejection by favorability: −M≺ ⊆M⪰.

10 Universal a priori assumption
Given the commitments implied by accepting gambles,
there is one assumption we judge reasonable to posit.

Indifference to status quo corresponds to the zero
gamble 0 being acceptable, and therefore indifferent:

O ⊆ S,
where O ∶= ⟨{0};∅⟩.

12 Basic gamble relations
Fix a modelM in MO, then we can define the following
relations between gambles f and g in L:

f is accepted in exchange for g
f ⪰ g⇔ f −g ⪰ 0⇔ f −g ∈M⪰;

f is dispreferred to g
f ≺ g⇔ f −g ≺ 0⇔ f −g ∈M≺.

The ‘axioms’ defining MO—no confusion, deductive
closure, no limbo, and indifference to status quo—can
then be reformulated:

No confusion f ã g∨ f ⊀ g,

Reflexivity f ⪰ f ,

Transitivity f ⪰ g∧g ⪰ h⇒ f ⪰ g,
f ≺ g∧h ⪰ g⇒ f ≺ h,

Mixture independence for all ◻ ∈ {⪰,≺} and 0 < µ ≤ 1:

f ◻g⇔ µ f +(1−µ)h◻µg+(1−µ)h.
So we can conclude:

• acceptability ⪰ is reflexive and transitive, and thus
a non-strict preorder and a vector ordering,

• dispreference ≺ is irreflexive.

13 Derived gamble relations
A number of other useful gamble relations follow from
the basic ones:

Indifference between f and g
f ≃ g⇔ f ⪰ g∧g ⪰ f ⇔ f −g ∈M≃;

f is preferred to g
f ≻ g⇔ f ⪰ g∧g ≺ f ⇔ f −g ∈A≻;

f and g are incomparable
f ≍ g⇔ f −g ∈A≍.

We can then conclude using the ‘axioms’ regulating
the basic relations ⪰ and ≺—no confusion, reflexivity,
transitivity, and mixture independence—that:

• indifference ≃ is reflexive, transitive, and symmetric,
and thus an equivalence relation,

• preference ≻ is irreflexive and transitive, and thus a
strict partial order ideally suited for decision making,

• incomparability ≍ is irreflexive, symmetric, and
in general intransitive.

14 Smallest models
Associate the relations ⊵ and ⊲ with the smallest modelS in MO, then a necessary condition for coherence is

Monotonicity f ⊵ g⇒ f ⪰ g and f ⊲ g⇒ f ≺ g.

15 Desirability
Strict preference desirability is

a simplification withM in MO
such thatM⪰ =M≻∪S≃.
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Nonstrict preference desirability
withM = clM⟨M⪰∪S⪰;S≺⟩.

M≃

M≍S≺

S⪰M⪰

−M⪰

16 Comparison with the literature
Forms of what we call strict preference desirability have
gotten the most attention in the literature:

Smith (1961, §14) talks about ‘exchange vectors’
(finite Ω ), works with S≻ ∶=L>0, and imposes thatM≻ is open;

Seidenfeld et al. (1990, §IV) talk about ‘favorable’
gambles (finite Ω ) and work with S≻ ∶=L>0;

Walley (1991, §3.7.8) discusses ‘strictly desirable’
gambles, works with S≻ ∶=L>0, and imposes an
openness axiomM≻∖S≻ ⊆M≻+R>0;

Walley (2000, §6) drops the openness axiom and
advocates a desirability framework with S≻ ∶=L>0;

De Cooman & Quaeghebeur (2009–2011) build on this,
but are the first with a nontrivial S≃, i.e., the gambles
expressing exchangeability.

Occurrences of the nonstrict case are also important:

Williams (1974) talks about ‘acceptable bets’ and works
with an S defined by S≻ ∶= { f ∈L ∶ inf f > 0}, so there
is no default indifference to status quo;

Walley (1991, §3.7.3) discusses ‘almost desirable’ gam-
bles, works with S ∶= ⟨L≥0;{ f ∈ L ∶ sup f < 0}⟩, and
imposes a closure axiom f +R>0 ⊆M⪰⇒ f ∈M⪰;

Walley (1991, App. F) talks about ‘really desirable’ gam-
bles and works with S ∶= ⟨L≥0;{ f ∈L ∶ sup f < 0}⟩.
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