Inference & Desirability

Erik Quaeghebeur

Department of Philosophy, Carnegie Mellon University
SYSTeMS Research Group, Ghent University
Context & assumptions

Possibility space \mathcal{X} outcomes experiment

We—an intentional system uncertain about outcome experiment

Goal model our uncertainty/beliefs/information & use this model for reasoning

Gambles payoff depends on outcome, bounded real-valued function on \mathcal{X}, set of gambles $\mathcal{L}(\mathcal{X})$

Utility linear and precise
Gambles

\[f(b) = \frac{3}{5} \]

\[f(a) = \frac{1}{2} \]

\[f = \left(\frac{1}{2}, \frac{3}{5} \right) \]
Gambles

\[f(a) = (1, 2) \]

\[f(b) = (3, 5) \]

\[I_a = (1, 0) \]

\[I_b = (0, 1) \]
Gambles

\[f = \left(-\frac{2}{3}, \frac{5}{6}, \frac{5}{6} \right) \]
Desirable gambles

Gamble f desirable when we accept the transaction

(i) the experiment’s outcome x is determined
(ii) our capital is changed by $f(x)$

Our uncertainty model set of desirable gambles
Outline

Reasoning about and with sets of desirable gambles
- Rationality criteria
- Assessments avoiding partial (or sure) loss
- Coherent sets of desirable gambles
- Natural extension
- Desirability relative to subspaces with arbitrary vector orderings

Derived coherent sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models
Constructive rationality criteria

It is reasonable to require that a set of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$ satisfies

- **Positive scaling:** $\lambda > 0 \land f \in \mathcal{D} \Rightarrow \lambda f \in \mathcal{D}$
- **Addition:** $f, g \in \mathcal{D} \Rightarrow f + g \in \mathcal{D}$
Constructive rationality criteria
It is reasonable to require that a set of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$ satisfies

- **Positive scaling:** $\lambda > 0 \Rightarrow \lambda \mathcal{D} = \mathcal{D}$,
- **Addition:** $\mathcal{D} + \mathcal{D} = \mathcal{D}$.
Constructive rationality criteria

It is reasonable to require that a set of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$ satisfies

Positive scaling: $\lambda > 0 \Rightarrow \lambda \mathcal{D} = \mathcal{D}$,

Addition: $\mathcal{D} + \mathcal{D} = \mathcal{D}$.

They extend an assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ to

$$\text{posi}(\mathcal{A}) := \left\{ \sum_{k=1}^{n} \lambda_k f_k : \lambda_k > 0 \land f_k \in \mathcal{L}(\mathcal{X}) \land n \in \mathbb{N} \right\}$$
Constraining rationality criteria

Comparing gambles the ordinary vector ordering is defined by

\[f \geq g \iff f - g \geq 0 \iff (f - g) \in \mathcal{L}^+_0(\mathcal{X}) \iff \inf(f - g) \geq 0 \]
\[f > g \iff f - g > 0 \iff (f - g) \in \mathcal{L}^+(\mathcal{X}) \iff \inf(f - g) \geq 0 \land \sup(f - g) > 0 \]
Constraining rationality criteria

Comparing gambles the ordinary vector ordering is defined by

\[f \geq g \iff f - g \geq 0 \iff (f - g) \in \mathcal{L}_0^+ (\mathcal{X}) \iff \inf(f - g) \geq 0 \]

\[f > g \iff f - g > 0 \iff (f - g) \in \mathcal{L}^+ (\mathcal{X}) \iff \inf(f - g) \geq 0 \land \sup(f - g) > 0 \]

It is reasonable to require that a set of desirable gambles \(\mathcal{D} \subseteq \mathcal{L}(\mathcal{X}) \) satisfies

- **Accepting partial gain:** \(f > 0 \Rightarrow f \in \mathcal{D} \)
- **Avoiding partial loss:** \(f < 0 \Rightarrow f \notin \mathcal{D} \)
Constraining rationality criteria

Comparing gambles the ordinary vector ordering is defined by

\[f \geq g \iff f - g \geq 0 \iff (f - g) \in L^+_0(X) \iff \inf(f - g) \geq 0 \]
\[f > g \iff f - g > 0 \iff (f - g) \in L^+(X) \iff \inf(f - g) \geq 0 \land \sup(f - g) > 0 \]

It is reasonable to require that a set of desirable gambles \(D \subseteq L(X) \) satisfies

Accepting partial gain: \(L^+(X) \subseteq D \)
Avoiding partial loss: \(D \cap L^-(X) = \emptyset \)
Constraining rationality criteria

Comparing gambles the ordinary vector ordering is defined by

\[f \geq g \iff f - g \geq 0 \iff (f - g) \in \mathcal{L}_0^+(\mathcal{X}) \iff \inf(f - g) \geq 0 \]

\[f > g \iff f - g > 0 \iff (f - g) \in \mathcal{L}^+(\mathcal{X}) \iff \inf(f - g) \geq 0 \land \sup(f - g) > 0 \]

If \(\mathcal{D} \subseteq \mathcal{L}(\mathcal{X}) \) accepts partial gain and avoids partial loss, then it also satisfies

Accepting sure gain: \(\inf f > 0 \Rightarrow f \in \mathcal{D} \)

Avoiding sure loss: \(\sup f < 0 \Rightarrow f \notin \mathcal{D} \)
Constraining rationality criteria

Comparing gambles the ordinary vector ordering is defined by

\[f \geq g \Leftrightarrow f - g \geq 0 \Leftrightarrow (f - g) \in L_0^+(\mathcal{X}) \Leftrightarrow \inf(f - g) \geq 0 \]

\[f > g \Leftrightarrow f - g > 0 \Leftrightarrow (f - g) \in L^+(\mathcal{X}) \Leftrightarrow \inf(f - g) \geq 0 \land \sup(f - g) > 0 \]

If \(\mathcal{D} \subseteq L(\mathcal{X}) \) accepts partial gain and avoids partial loss, then it also satisfies

Accepting sure gain: \(\text{int}(L^+(\mathcal{X})) \subseteq \mathcal{D} \)

Avoiding sure loss: \(\mathcal{D} \cap \text{int}(L^-(\mathcal{X})) = \emptyset \)
Assessments & partial loss

An assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ avoids partial loss iff

$$\text{posi}(\mathcal{A}) \cap \mathcal{L}^{-}(\mathcal{X}) = \emptyset$$
Assessments & partial loss

An assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ avoids partial loss iff

$$\text{posi}(\mathcal{A}) \cap \mathcal{L}^{-}(\mathcal{X}) = \emptyset$$

An assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ incurs partial loss iff

$$\text{posi}(\mathcal{A}) \cap \mathcal{L}^{-}(\mathcal{X}) \neq \emptyset$$
Coherent sets of desirable gambles

Coherence A set of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$ is coherent if it satisfies all four rationality criteria.

Geometry It is a convex cone containing the positive orthant $\mathcal{L}^+(\mathcal{X})$, but excluding the negative orthant $\mathcal{L}^-(\mathcal{X})$.

Set of coherent sets $\mathbb{D}(\mathcal{X})$
Coherent extensions

Coherent extensions of an assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ Any encompassing coherent set of desirable gambles

Set of coherent extensions $\mathbb{D}_\mathcal{A} := \{ \mathcal{D} \in \mathbb{D}(\mathcal{X}) : \mathcal{A} \subseteq \mathcal{D} \}$
Coherent extensions

Coherent extensions of an assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ Any encompassing coherent set of desirable gambles

Set of coherent extensions $\mathcal{D}_\mathcal{A} := \{ \mathcal{D} \in \mathcal{D}(\mathcal{X}) : \mathcal{A} \subseteq \mathcal{D} \}$

Inclusion based partial order of extensions that are more/less committal
Coherent extensions

Coherent extensions of an assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ Any encompassing coherent set of desirable gambles

Set of coherent extensions $\mathbb{D}_\mathcal{A} := \{ \mathcal{D} \in \mathbb{D}(\mathcal{X}) : \mathcal{A} \subseteq \mathcal{D} \}$

Inclusion based partial order of extensions that are more/less committal

least committal

maximally committal
Natural extension
Given the constructive rationality criteria and accepting partial gains, there is a natural extension of an assessment \(A \subseteq \mathcal{L}(\mathcal{X}) \):

\[
\mathcal{E}(A) := \text{posi}(A \cup \mathcal{L}^+(\mathcal{X}))
= \text{posi}(A) \cup \mathcal{L}^+(\mathcal{X}) \cup (\text{posi}(A) + \mathcal{L}^+(\mathcal{X}))
\]

Natural Extension Theorem
The natural extension \(\mathcal{E}(A) \) of \(A \subseteq \mathcal{L}(\mathcal{X}) \) coincides with its least committal coherent extension if and only if \(A \) avoids partial loss.

Natural extension is the prime tool for deductive inference in desirability.
Natural extension
Given the constructive rationality criteria and accepting partial gains, there is a natural extension of an assessment $A \subseteq \mathcal{L}(\mathcal{X})$:

$$
\mathcal{E}(A) := \text{posi}(A \cup \mathcal{L}^+(\mathcal{X}))
$$

$$
= \text{posi}(A) \cup \mathcal{L}^+(\mathcal{X}) \cup (\text{posi}(A) + \mathcal{L}^+(\mathcal{X}))
$$

Natural Extension Theorem
The natural extension $\mathcal{E}(A)$ of $A \subseteq \mathcal{L}(\mathcal{X})$ coincides with its least committal coherent extension $\bigcap D_A$ if and only if A avoids partial loss.

Natural extension is the prime tool for deductive inference in desirability.
Desirability relative to subspaces with arbitrary vector orderings

Desirability up until now 'relative' to $\mathcal{L}(\mathcal{X})$, the linear space of all gambles on \mathcal{X}, with the ordinary vector ordering determined by $\mathcal{L}^+(\mathcal{X})$ and $\mathcal{L}_0^+(\mathcal{X}) = \mathcal{L}^+(\mathcal{X}) \cup \{0\}$

Desirability relative to a linear subspace \mathcal{K} of $\mathcal{L}(\mathcal{X})$

Arbitrary vector ordering determined by cones $\mathcal{C} \subset \mathcal{L}(\mathcal{X})$ and $\mathcal{C}_0 = \mathcal{C} \cup \{0\}$
Exercises 1

1. Possibility space \(\{a, b\} \); given are assessments

\[
\begin{align*}
\mathcal{A}_1 & := \{(-1000, 1)\}, \\
\mathcal{A}_2 & := \{(-1000, 0), \left(\frac{1}{4}, \frac{1}{2}\right), (6, 3)\}, \\
\mathcal{A}_3 & := \{(-1000, 1), \left(\frac{1}{4}, -\frac{1}{2}\right)\}, \\
\mathcal{A}_4 & := \{(-1, 2), \left(\frac{1}{2}, -\frac{1}{4}\right)\}.
\end{align*}
\]

1.1 Does \(\mathcal{A}_i \) avoid sure loss?
1.2 Does \(\mathcal{A}_i \) avoid partial loss?
1.3 Does \(\text{posi}(\mathcal{A}_i) \) accept sure gain?
1.4 Does \(\text{posi}(\mathcal{A}_i) \) accept partial gain?
1.5 If \(\mathcal{A}_i \) avoids sure loss, describe \(\mathcal{E}(\mathcal{A}_i) \) by giving its extreme rays (as sup-norm one vectors).
1.6 Order all of the resulting \(\mathcal{E}(\mathcal{A}_i) \) according to how committal they are.
2. Possibility space \{a, b, c\}; given are assessments

\[A_5 := \{(1, -2, 0), (0, 1, -2)\}, \]
\[A_6 := \{(1, -2, 0), (0, 2, -4), (-8, 0, 4)\}, \]
\[A_7 := \{(-1, 0, 4), 6I_b - 1\}. \]

2.1 Repeat the subquestions of Exercise 1.
2.2 Represent \(E(A_7)\) in the sum-one plane of \(L(\{a, b, c\})\).

3. Repeat Exercise 1 for vector orderings defined by the cones.

\[C_1 := \text{posi}(\{(1, \frac{1}{10}), (0, 1)\}), \]
\[C_2 := \text{posi}(\{(1, -\frac{1}{10}), (0, 1)\}), \]
\[C_3 := \text{posi}(\{(1, -\frac{1}{10}), (0, -1)\}). \]

4. Prove the Natural Extension Theorem.
Outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles
 - Gamble space transformations
 - Conditional sets of desirable gambles
 - Marginal sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models
Gamble space transformations that preserve coherence

Possibility spaces \mathcal{X} and \mathcal{Z}

Transformation Γ from $\mathcal{L}(\mathcal{Z})$ to $\mathcal{L}(\mathcal{X})$

Conditions for preserving coherence

- **Positive homogeneity:** $\lambda > 0 \Rightarrow \Gamma(\lambda f) = \lambda \Gamma f$
- **Additivity:** $\Gamma(f + g) = \Gamma f + \Gamma g$
- **Positivity:** $f > 0 \iff \Gamma f > 0$
- **Negativity:** $f < 0 \iff \Gamma f < 0$
Gamble space transformations that preserve coherence

Possibility spaces \mathcal{X} and \mathcal{Z}

Transformation Γ from $\mathcal{L}(\mathcal{Z})$ to $\mathcal{L}(\mathcal{X})$

Conditions for preserving coherence

Positive homogeneity:
$$\lambda > 0 \Rightarrow \Gamma(\lambda f) = \lambda \Gamma f$$

Additivity:
$$\Gamma(f + g) = \Gamma f + \Gamma g$$

Positivity:
$$f > 0 \iff \Gamma f > 0$$

Negativity:
$$f < 0 \iff \Gamma f < 0$$

which imply

Linearity:
$$\lambda \in \mathbb{R} \Rightarrow \Gamma(\lambda f + g) = \lambda \Gamma f + \Gamma g$$

Monotonicity:
$$f > g \iff \Gamma f > \Gamma g$$

Coherence Preserving Transformation Proposition

A transformation preserves coherence if and only if it is linear and monotone.
Transformation of a set of desirable gambles

\[\mathcal{D}_\Gamma := \{ h \in \mathcal{L}(\mathcal{Z}) : \Gamma h \in \mathcal{D} \} \]
Transformation of a set of desirable gambles

\[\mathcal{D}_\Gamma := \{ h \in \mathcal{L}(\mathcal{Z}) : \Gamma h \in \mathcal{D} \} \]

- \(\Gamma : \mathcal{L}(\{d, b\}) \to \mathcal{L}(\{a, b\}) \)
- \((\Gamma h)(a) = \frac{1}{2} h(d) \) and \((\Gamma h)(b) = h(b) \)
Taking a slice of a set of desirable gambles

\[(\frac{4}{3}, 0, -\frac{1}{3})\]

\[(\frac{5}{3}, 0, -\frac{2}{3})\]

\[(1, \frac{5}{9}, -\frac{5}{9})\]

\[(\frac{1}{6}, \frac{5}{4}, -\frac{5}{12})\]

\[(-\frac{1}{3}, 0, \frac{4}{3})\]

\[2I_b - \frac{1}{3}\]
Taking a slice of a set of desirable gambles

\[\Gamma_1 : \mathcal{L}(\{c, d\}) \rightarrow \mathcal{L}(\{a, b, c\}) \]

\[(\Gamma_1 h)(a) = (\Gamma_1 h)(b) = h(d) \text{ and } (\Gamma_1 h)(c) = h(c) \]
Taking a slice of a set of desirable gambles

\[\Gamma_1: \mathcal{L}(\{c, d\}) \rightarrow \mathcal{L}(\{a, b, c\}) \]

\[(\Gamma_1 h)(a) = (\Gamma_1 h)(b) = h(d) \text{ and } (\Gamma_1 h)(c) = h(c) \]

\[\Gamma_2: \mathcal{L}(\{c, d\}) \rightarrow \mathcal{L}(\{a, b, c\}) \]

\[(\Gamma_2 h)(a) = \frac{3}{4} h(d), \quad (\Gamma_2 h)(b) = \frac{1}{4} h(d) \text{ and } (\Gamma_2 h)(c) = h(c) \]
Conditional sets of desirable gambles

Conditioning event $B \subseteq \mathcal{X}$ is what the experiment’s outcome is assumed to belong to.

Contingent gambles are those for which, if B does not occur, status quo is maintained.

Transformation \upharpoonright_{B^c} maps gambles on B to contingent gambles on \mathcal{X}:

$$(\upharpoonright_{B^c} h)(x) = \begin{cases} h(x), & x \in B, \\ 0, & x \in B^c, \end{cases}$$
Conditional sets of desirable gambles

Conditioning event $B \subseteq \mathcal{X}$ is what the experiment’s outcome is assumed to belong to.

Contingent gambles are those for which, if B does not occur, status quo is maintained.

Transformation \upharpoonright_{B^c} maps gambles on B to contingent gambles on \mathcal{X}:

$$\left(\upharpoonright_{B^c}h \right)(x) = \begin{cases} h(x), & x \in B, \\ 0, & x \in B^c, \end{cases}$$

Conditional set of desirable gambles Given a set of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$, the set of desirable gambles conditional on B is

$$\mathcal{D}|B := \mathcal{D}_{\upharpoonright_{B^c}} = \{ h \in \mathcal{L}(B) : \upharpoonright_{B^c}h \in \mathcal{D} \}$$

Other formats: $\upharpoonright_{B^c}(\mathcal{D}|B) = \{ f \in \mathcal{D} : f = fI_B \}$ and $\upharpoonright_{B^c}(\mathcal{D}|B) + \upharpoonright_B(\mathcal{L}(B^c)) = \{ f \in \mathcal{L}(\mathcal{X}) : fI_B \in \mathcal{D} \}$

Can be used as an updated set of desirable gambles.
Conditional sets of desirable gambles: example

\[-\frac{1}{3}, 0, \frac{4}{3}\]

\[2I_b - \frac{1}{3}\]

\[\frac{4}{3}, 0, -\frac{1}{3}\]

\[\frac{5}{3}, 0, -\frac{2}{3}\]

\[1, \frac{5}{9}, -\frac{5}{9}\]

\[\frac{1}{6}, \frac{5}{4}, -\frac{5}{12}\]
Conditional sets of desirable gambles: example

\(\{a, b\} \)

\(\{a, b\} \cap \mathcal{D}\)

\((-\frac{1}{3}, 0, \frac{4}{3})\)

\((\frac{4}{3}, 0, -\frac{1}{3})\)

\((\frac{5}{3}, 0, -\frac{2}{3})\)

\((1, \frac{5}{9}, -\frac{5}{9})\)

\((\frac{1}{6}, \frac{5}{4}, -\frac{5}{12})\)
Conditional sets of desirable gambles: example

\[
\begin{align*}
& \mathcal{D} = \{a, b, c\} \\
& \mathcal{D}|\{a, b\} = \{(−\frac{1}{3}, 0, \frac{4}{3})\} \\
& \mathcal{D}|\{b, c\} = \{(\frac{25}{18}, −\frac{7}{18})\}
\end{align*}
\]
Conditional sets of desirable gambles: example
Marginal sets of desirable gambles

Cartesian product possibility space $\mathcal{X} = \mathcal{Y} \times \mathcal{Z}$, focus on \mathcal{Y}-component (ignore \mathcal{Z}-component)

Cylindrical extension $\uparrow_{\mathcal{Z}}$ maps gambles from the source gamble space to its cartesian product with $\mathcal{L}(\mathcal{Z})$:

$$(\uparrow_{\mathcal{Z}} h)(y, z) = h(y)$$
Marginal sets of desirable gambles

Cartesian product possibility space \(\mathcal{X} = \mathcal{Y} \times \mathcal{Z} \), focus on \(\mathcal{Y} \)-component (ignore \(\mathcal{Z} \)-component)

Cylindrical extension \(\uparrow_{\mathcal{Z}} \) maps gambles from the source gamble space to its cartesian product with \(\mathcal{L}(\mathcal{Z}) \):

\[
(\uparrow_{\mathcal{Z}} h)(y, z) = h(y)
\]

Marginal set of desirable gambles Given a set of desirable gambles \(\mathcal{D} \subseteq \mathcal{L}(\mathcal{Y} \times \mathcal{Z}) \), its \(\mathcal{Y} \)-marginal is

\[
\mathcal{D} \downarrow \mathcal{Y} := \mathcal{D}_{\uparrow_{\mathcal{Z}}} = \{ h \in \mathcal{L}(\mathcal{Y}) : \uparrow_{\mathcal{Z}} h \in \mathcal{D} \}
\]
Marginals for surjective maps and partitions

Essential features of marginalization:

Surjective map $\gamma \downarrow \mathcal{Y}$ from $\mathcal{X} = \mathcal{Y} \times \mathcal{Z}$ to \mathcal{Y} such that $\uparrow_{\mathcal{Z}} h = h \circ \gamma \downarrow \mathcal{Y}$:

$$\gamma \downarrow \mathcal{Y}(y, z) = y$$

Partition $\mathcal{B}_{\gamma \downarrow \mathcal{Y}}$ can function as the possibility space of the \mathcal{Y}-marginal:

$$\mathcal{B}_{\gamma \downarrow \mathcal{Y}} := \{\gamma^{-1}_{\downarrow \mathcal{Y}}(y) : y \in \mathcal{Y}\} = \{\{y\} \times \mathcal{Z} : y \in \mathcal{Y}\}$$
Marginals for surjective maps and partitions

Essential features of marginalization:

Surjective map $\gamma_{\downarrow Y}$ from $\mathcal{X} = \mathcal{Y} \times \mathcal{Z}$ to \mathcal{Y} such that $\uparrow_{\mathcal{Z}} h = h \circ \gamma_{\downarrow Y}$:

$$\gamma_{\downarrow Y}(y, z) = y$$

Partition $\mathcal{B}_{\gamma_{\downarrow Y}}$ can function as the possibility space of the \mathcal{Y}-marginal:

$$\mathcal{B}_{\gamma_{\downarrow Y}} := \{ \gamma_{\downarrow Y}^{-1}(y) : y \in \mathcal{Y} \} = \{ \{ y \} \times \mathcal{Z} : y \in \mathcal{Y} \}$$

Generalization from the Cartesian product case:

Surjective map γ Associated transformation $\Gamma_{\gamma} h = h \circ \gamma$

and partition $\mathcal{B}_{\gamma} := \{ \gamma^{-1}(y) : y \in \mathcal{Y} \}$;

resulting γ-marginal $\mathcal{D}_{\gamma} := \mathcal{D}_{\Gamma_{\gamma}}$.

Partition \mathcal{B} Analogous; define $\gamma_{\mathcal{B}}$ for all $x \in \mathcal{X}$ by

letting $\gamma_{\mathcal{B}}(x)$ equal that B in \mathcal{B} for which $x \in B$.
Outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles

Combining sets of desirable gambles
 - Joining compatible individuals
 - Marginal extension

Partial preference orders

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models
Joining compatible individuals
How can we combine individual sets of desirable gambles into a joint?

▶ View the individual sets as derived from the joint: specify the transformations between the individual gamble spaces and the joint gamble space.

▶ The union of the transformed individual sets is taken as an assessment.

▶ Check whether this the individual sets are compatible; i.e., if the assessment avoids partial loss

▶ If so, the natural extension of the assessment is the joint; if not, there is no coherent joint.
Joining compatible individuals
How can we combine individual sets of desirable gambles into a joint?

- View the individual sets as derived from the joint: specify the transformations between the individual gamble spaces and the joint gamble space.
- The union of the transformed individual sets is taken as an assessment.
- Check whether this the individual sets are compatible; i.e., if the assessment avoids partial loss
- If so, the natural extension of the assessment is the joint; if not, there is no coherent joint

Consider the following individually coherent conditional sets of desirable gambles:

- \(\mathcal{E}(\{(-2, 1)\}) \subset \mathcal{L}(\{a, b\}) \); a contingent gamble: \((-2, 1, 0)\)
- \(\mathcal{E}(\{(-2, 1)\}) \subset \mathcal{L}(\{b, c\}) \); a contingent gamble: \((0, -2, 1)\)
- \(\mathcal{E}(\{(-2, 1)\}) \subset \mathcal{L}(\{c, a\}) \); a contingent gamble: \((1, 0, -2)\)

They are incompatible: the sum of the given contingent desirable gambles, \((-1, -1, -1)\), incurs sure loss.
Combining sets of desirable gambles: example
Combining sets of desirable gambles: example

\[\mathcal{A} := \Gamma_1(\mathcal{D}_{\Gamma_1}) \cup \Gamma_2(\mathcal{D}_{\Gamma_2}) \cup \uparrow \{c\}(\mathcal{D}|\{a, b\}) \]
\[\quad \cup \uparrow \{a\}(\mathcal{D}|\{b, c\}) \]
\[\quad \cup \uparrow \{b\}(\mathcal{D}|\{c, a\}) \]
Combining sets of desirable gambles: example

\[\mathcal{A} := \Gamma_1(\mathcal{D}_{\Gamma_1}) \cup \Gamma_2(\mathcal{D}_{\Gamma_2}) \cup \uparrow_{\{c\}}(\mathcal{D}|\{a, b\}) \]
\[\cup \uparrow_{\{a\}}(\mathcal{D}|\{b, c\}) \]
\[\cup \uparrow_{\{b\}}(\mathcal{D}|\{c, a\}) \]
Marginal extension

Separately specified conditional sets of desirable gambles have disjunct possibility spaces.

Separately coherent conditional sets of desirable gambles are separately specified and individually coherent.

Marginal Extension Theorem

Given a partition B of X, a coherent B-marginal $D_B \subset L(B)$, and separately coherent conditional sets of desirable gambles $D|B \subset L(B)$, $B \in B$, then their combination $D := E(A) \subseteq L(X)$, with $A := \Gamma_B(D_B) \cup \bigcup_{B \in B} \mathcal{D} \setminus B^c(D|B)$, is coherent as well.
Marginal extension

Separately specified conditional sets of desirable gambles have disjunct possibility spaces

Separately coherent conditional sets of desirable gambles are separately specified and individually coherent

Marginal Extension Theorem

Given a partition B of X, a coherent B-marginal $D_B \subset \mathcal{L}(B)$, and separately coherent conditional sets of desirable gambles $D|B \subset \mathcal{L}(B)$, $B \in B$, then their combination $D := E(A) \subseteq \mathcal{L}(X)$, with $A := \Gamma_B(D_B) \cup \bigcup_{B \in B} \upharpoonright_{B^c}(D|B)$, is coherent as well.
Marginal extension
Separately specified conditional sets of desirable gambles have disjunct possibility spaces
Separately coherent conditional sets of desirable gambles are separately specified and individually coherent

Marginal Extension Theorem
Given a partition B of X, a coherent B-marginal $D_B \subset \mathcal{L}(B)$, and separately coherent conditional sets of desirable gambles $D|B \subset \mathcal{L}(B)$, $B \in B$, then their combination $D := \mathcal{E}(A) \subseteq \mathcal{L}(X)$, with $A := \Gamma_B(D_B) \cup \bigcup_{B \in B} \uparrow_{B^c}(D|B)$, is coherent as well.
Exercises

1. Explicitly show that the transformation Γ_γ associated to the surjective map $\gamma : \{0, 1\}^2 \to \{0, 1, 2\} : x \mapsto x_1 + x_2$ preserves coherence.

 1.1 What slice of $\mathcal{L}(\{0, 1\}^2)$ does Γ_γ generate?

 1.2 What is the partition associated to γ?

2. Show that the transformation $\Gamma : \mathcal{L}(\{0, 1, 2\}) \to \mathcal{L}([0, 1])$ that maps a gamble g to the parabola $g(0)(1 - \theta)^2 + g(1)\theta(1 - \theta) + 2g(2)\theta^2$ in θ does not preserve coherence, by considering $1 - 4\theta + 4\theta^2$.

 2.1 Describe the linear subspace of $\mathcal{L}([0, 1])$ generated by Γ.

 2.2 Define a vector ordering on this subspace that makes Γ preserve coherence.

3. Take $\mathcal{E}(\mathcal{A}_7)$ from Exercise 2.2 of the previous series.

 3.1 Calculate its conditionals for all nonempty events of $\{a, b, c\}$, give the extreme-ray representation in all three formats.

 3.2 Calculate its marginals for all partitions of $\{a, b, c\}$.

 3.3 Calculate the marginal extensions of the appropriate derived conditionals and marginals for all partitions of $\{a, b, c\}$.

4. Prove the Marginal Extension Theorem.
Outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders
 ■ Strict preference
 ■ Nonstrict preference
 ■ Nonstrict preferences implied by strict ones
 ■ Strict preferences implied by nonstrict ones

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models
Partial strict preference order

Strict preference $f \succ g$ if we are eager to exchange g for f

Partial order The order does not have to be complete, $f \not\succeq g \land g \not\succeq f$ is possible

Strict desirability is strict preference over status quo, the zero gamble 0:

$$f \succ g \iff f - g \succ 0 \iff f - g \in \mathcal{D}$$
Partial strict preference order

Strict preference \(f \succ g \) if we are eager to exchange \(g \) for \(f \)

Partial order The order does not have to be complete, \(f \not\succ g \land g \not\succ f \) is possible

Strict desirability is strict preference over status quo, the zero gamble 0:

\[
f \succ g \iff f - g \succ 0 \iff f - g \in D
\]

Rationality criteria for strict preference relations \(\succ \) on \(\mathcal{L}(X) \times \mathcal{L}(X) \):

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreflexivity</td>
<td>(f \not\succ f)</td>
</tr>
<tr>
<td>Transitivity</td>
<td>(f \succ g \land g \succ h \Rightarrow f \succ h)</td>
</tr>
<tr>
<td>Mix-indep.</td>
<td>(0 < \mu \leq 1 \Rightarrow (f \succ g \iff \mu f + (1 - \mu)h \succ \mu g + (1 - \mu)h))</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>(f > g \Rightarrow f > g)</td>
</tr>
</tbody>
</table>
Partial strict preference order

Strict preference \(f \succ g \) if we are eager to exchange \(g \) for \(f \)

Partial order The order does not have to be complete,
\(f \not\succ g \land g \not\succ f \) is possible

Strict desirability is strict preference over status quo, the zero gamble 0:

\[
f \succ g \iff f - g \succ 0 \iff f - g \in \mathcal{D}
\]

Rationality criteria for strict preference relations \(\succ \) on \(\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X}) \):

- **Irreflexivity:** \(f \not\succ f \)
- **Transitivity:** \(f \succ g \land g \succ h \Rightarrow f \succ h \)
- **Mix-indep.:** \(0 < \mu \leq 1 \Rightarrow (f \succ g \Leftrightarrow \mu f + (1 - \mu)h \succ \mu g + (1 - \mu)h) \)
- **Monotonicity:** \(f > g \Rightarrow f > g \)

Strengthening coherence criteria for sets of desirable gambles \(\mathcal{D} \):

- **Avoiding nonpositivity:** \(f \leq 0 \Rightarrow f \notin \mathcal{D} \)
Partial strict preference order

Strict preference \(f \succ g \) if we are eager to exchange \(g \) for \(f \)

Partial order The order does not have to be complete, \(f \not\succ g \land g \not\succ f \) is possible

Strict desirability is strict preference over status quo, the zero gamble \(0 \):

\[
f \succ g \iff f - g \succ 0 \iff f - g \in \mathcal{D}
\]

Rationality criteria for strict preference relations \(\succ \) on \(\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X}) \):

- Irreflexivity: \(f \not\succ f \)
- Transitivity: \(f \succ g \land g \succ h \Rightarrow f \succ h \)
- Mix-indep.: \(0 < \mu \leq 1 \Rightarrow (f \succ g \iff \mu f + (1 - \mu)h \succ \mu g + (1 - \mu)h) \)
- Monotonicity: \(f > g \Rightarrow f \succ g \)

Strengthening coherence criteria for sets of desirable gambles \(\mathcal{D} \):

Avoiding nonpositivity: \(\mathcal{D} \cap \mathcal{L}_0^-(\mathcal{X}) = \emptyset \)
Partial strict preference order

Strict preference $f \succ g$ if we are eager to exchange g for f

Partial order The order does not have to be complete, $f \not\succ g \land g \not\succ f$ is possible

Strict desirability is strict preference over status quo, the zero gamble 0:

$$f \succ g \iff f - g \succ 0 \iff f - g \in \mathcal{D}$$

Rationality criteria for strict preference relations \succ on $\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X})$:

<table>
<thead>
<tr>
<th>Property</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreflexivity</td>
<td>$f \not\succ f$</td>
</tr>
<tr>
<td>Transitivity</td>
<td>$f \succ g \land g \succ h \implies f \succ h$</td>
</tr>
<tr>
<td>Mix-indep.:</td>
<td>$0 < \mu \leq 1 \implies (f \succ g \iff \mu f + (1 - \mu)h \succ \mu g + (1 - \mu)h)$</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>$f \succ g \implies f \succ g$</td>
</tr>
</tbody>
</table>

Strengthening coherence criteria for sets of desirable gambles \mathcal{D}:

Avoiding nonpositivity: $0 \notin \mathcal{D}$
Partial nonstrict preference order

Nonstrict preference $f \succeq g$ if we are willing, i.e., not adverse, to exchange g for f

Partial ... order The order does not have to be complete

Nonstrict desirability is nonstrict preference over status quo:

\[f \succeq g \iff f - g \succeq 0 \iff f - g \in \mathcal{D} \]
Partial nonstrict preference order

Nonstrict preference \(f \succeq g \) if we are willing, i.e., not adverse, to exchange \(g \) for \(f \)

Partial ...order The order does not have to be complete

Nonstrict desirability is nonstrict preference over status quo:

\[
f \succeq g \iff f - g \succeq 0 \iff f - g \in \mathcal{D}
\]

Rationality criteria for nonstrict preference relations \(\succeq \) on \(\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X}) \):

- Reflexivity: \(f \succeq f \)
- Transitivity: \(g \succeq h \land f \succeq g \Rightarrow f \succeq h \)
- Mix-indep.: \(0 < \mu \leq 1 \Rightarrow (f \succeq g \iff \mu f + (1 - \mu)h \succeq \mu g + (1 - \mu)h) \)
- Monotonicity: \(f > g \Rightarrow f \succeq g \land g \not\succeq f \)
Partial nonstrict preference order

Nonstrict preference \(f \succeq g \) if we are willing, i.e., not adverse, to exchange \(g \) for \(f \)

Partial order The order does not have to be complete

Nonstrict desirability is nonstrict preference over status quo:

\[
f \succeq g \iff f - g \succeq 0 \iff f - g \in D
\]

Rationality criteria for nonstrict preference relations \(\succeq \) on \(\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X}) \):

Reflexivity: \(f \succeq f \)

Transitivity: \(g \succeq h \land f \succeq g \Rightarrow f \succeq h \)

Mix-indep.: \(0 < \mu \leq 1 \Rightarrow (f \succeq g \iff \mu f + (1 - \mu)h \succeq \mu g + (1 - \mu)h) \)

Monotonicity: \(f > g \Rightarrow f \succeq g \land g \nleq f \)

Strengthening coherence criteria for sets of desirable gambles \(D \):

Accepting nonnegativity: \(f \geq 0 \Rightarrow f \in D \)
Partial nonstrict preference order

Nonstrict preference $f \succsim g$ if we are willing, i.e., not adverse, to exchange g for f

Partial order The order does not have to be complete

Nonstrict desirability is nonstrict preference over status quo:

$$f \succsim g \iff f - g \succeq 0 \iff f - g \in D$$

Rationality criteria for nonstrict preference relations \succsim on $\mathcal{L}(\mathcal{X}) \times \mathcal{L}(\mathcal{X})$:

- Reflexivity: $f \succsim f$
- Transitivity: $g \succsim h \land f \succsim g \Rightarrow f \succsim h$
- Mix-indep.: $0 < \mu \leq 1 \Rightarrow (f \succsim g \iff \mu f + (1 - \mu)h \succeq \mu g + (1 - \mu)h)$
- Monotonicity: $f > g \Rightarrow f \succsim g \land g \not\succeq f$

Strengthening coherence criteria for sets of desirable gambles \mathcal{D}:

Accepting nonnegativity: $\mathcal{L}_0^+(\mathcal{X}) \subseteq \mathcal{D}$
Strict vs. nonstrict

- Strict preference is more useful for decision making
Strict vs. nonstrict

- Strict preference is more useful for decision making
- Advantages of nonstrict preference:
 - Indifference is the equivalence relation defined by symmetric nonstrict preference:
 \[f \equiv g \iff f \succ g \land g \succ f \]
 - Incomparability is the irreflexive relation defined by symmetric nonstrict nonpreference:
 \[f \preceq g \iff f \npreceq g \land g \npreceq f \]
Strict vs. nonstrict

- Strict preference is more useful for decision making
- Advantages of nonstrict preference:

 Indifference is the equivalence relation defined by symmetric nonstrict preference:

 \[f \equiv g \iff f \succeq g \land g \succeq f \]

 Incomparability is the irreflexive relation defined by symmetric nonstrict nonpreference:

 \[f \npreceq g \iff f \npreceq g \land g \npreceq f \]

Example:

- \(\equiv \)-equivalence classes \(\mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3 \)
- Intransitivity of \(\npreceq \):
 \(\mathcal{K}_1 \npreceq \mathcal{K}_3 \) and \(\mathcal{K}_3 \npreceq \mathcal{K}_2 \), but \(\mathcal{K}_1 \succeq \mathcal{K}_2 \).
Nonstrict preferences implied by strict ones

Motivation Indifference and incomparability are useful concepts

Associate a nonstrict preference relation \succeq to a strict one \succ;
 a set of nonstrictly desirable gambles \mathcal{D}_{\succeq}
 to a set of strictly desirable gambles \mathcal{D}_{\succ}
Nonstrict preferences implied by strict ones

Motivation Indifference and incomparability are useful concepts

Associate a nonstrict preference relation \succeq to a strict one \succ; a set of nonstrictly desirable gambles \mathcal{D}_{\succeq} to a set of strictly desirable gambles \mathcal{D}_{\succ}

Bad proposal Let $\mathcal{D}_{\succ} := \mathcal{D}_{\succeq} \cup \{0\}$; it makes the difference between \succeq and \succ vacuous
Nonstrict preferences implied by strict ones

Motivation Indifference and incomparability are useful concepts

Associate a nonstrict preference relation \succeq to a strict one \succ; a set of nonstrictly desirable gambles D_\succeq to a set of strictly desirable gambles D_\succ

Bad proposal Let $D_\succ := D_\succeq \cup \{0\}$; it makes the difference between \succeq and \succ vacuous

Better proposal ‘Making a sweet deal by sweetening an OK deal’:

$$f \succeq g \iff f - g \succeq 0 \iff (f - g) + D_\succ \subseteq D_\succ$$

Immediate consequence:

$$f \succ g \implies g \not\succeq f$$

Incomparability \precsim and indifference \approx
Strict and the associated nonstrict preferences: examples
Strict and the associated nonstrict preferences: examples
Strict and the associated nonstrict preferences: examples

\[\begin{align*}
&g - f &\preceq & f - g \\
&f \succeq & g
\end{align*} \]
Strict and the associated nonstrict preferences: examples

\[g - f \gtrsim f \gtrsim g \]
\[f - g \gtrsim g \gtrsim g \]
\[g - f \gtrsim f \gtrsim g \]
\[f - g \gtrsim g \gtrsim g \]
Strict and the associated nonstrict preferences: examples
Strict and the associated nonstrict preferences: examples
Strict and the associated nonstrict preferences: examples

\[f \succ g \]
\[f \preceq g \]
\[f \approx g \]

\[f - g \]
\[g - f \]
\[g \preceq f \]

\[f \preceq g \]
\[f \approx g \]
\[f \succ g \]

\[g - f \]
\[f - g \]
\[g \preceq f \]
Strict and the associated nonstrict preferences: examples

\[
\begin{align*}
g - f &\quad f - g \\
(f \preceq g) &
\end{align*}
\]

\[
\begin{align*}
g - f &\quad f \\
(f \succ g) &
\end{align*}
\]

\[
\begin{align*}
f - g &\quad f \\
(f \preceq g) &
\end{align*}
\]

\[
\begin{align*}
g - f &\quad g \\
(f \succ g) &
\end{align*}
\]

\[
\begin{align*}
f &\quad g - f \\
(f \preceq g) &
\end{align*}
\]

\[
\begin{align*}
f &\quad g \\
(f \succ g) &
\end{align*}
\]
Strict preferences implied by nonstrict ones

Motivation Strict preferences are useful for decision making

Associate a strict preference relation \triangleright to a nonstrict one \triangleright; a set of strictly desirable gambles $\mathcal{D}_{\triangleright}$ to a set of nonstrictly desirable gambles \mathcal{D}_{\geq}
Strict preferences implied by nonstrict ones

Motivation Strict preferences are useful for decision making

Associate a strict preference relation \triangleright to a nonstrict one \triangleright; a set of strictly desirable gambles $\mathcal{D}_{\triangleright}$ to a set of nonstrictly desirable gambles $\mathcal{D}_{\triangleright}$

Reuse deal-sweetening? Does not work in general: some $\mathcal{D}_{\triangleright}$ cannot be associated to any $\mathcal{D}_{\triangleright}$
Strict preferences implied by nonstrict ones

Motivation: Strict preferences are useful for decision making. Associate a strict preference relation \succ to a nonstrict one \succeq; a set of strictly desirable gambles \mathcal{D}_\succ to a set of nonstrictly desirable gambles \mathcal{D}_\succeq.

Reuse deal-sweetening? Does not work in general: some \mathcal{D}_\succeq cannot be associated to any \mathcal{D}_\succ.

Other options? Not pursued: no proliferation of interpretations.

We continue with strict desirability as the primitive notion.
Exercises

1. Possibility space \{a, b\}.
 1.1 Which of \((-4, 3), (-3, 4), \text{ and } (3, -3)\) belong to \(D\succ, D\succeq,\)
 both, or neither, when \((5, -2) \approx (-2, 5)\).
 1.2 Which, or both, or neither of \\{\((-1, 1)\)\} and \\{(2, -3)\} is compatible as
 an assessment with \((5, -3) \simeq (4, -1)\).

2. Prove the equivalence of the rationality criteria for strict preference
 and strict desirability.

3. Prove that \(\succeq\) satisfies the rationality criteria of nonstrict preference
 (assume they are equivalent to those for nonstrict desirability).
Outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders

Maximally committal sets of strictly desirable gambles
 ■ Maximally committal coherent extensions
 ■ Maximality & transformations

Relationships with other, nonequivalent models
Maximally committal sets of strictly desirable gambles

Maximal coherent sets of (strictly) desirable gambles . . .

- are the maximal elements of $\mathbb{D}(\mathcal{X})$ ordered by inclusion
- are not included in any other coherent set of desirable gambles
- result in assessments that incur nonpositivity when any gamble in its complement is added to it
Maximally committal sets of strictly desirable gambles

Maximal coherent sets of (strictly) desirable gambles...

- are the maximal elements of $\mathbb{D}(\mathcal{X})$ ordered by inclusion
- are not included in any other coherent set of desirable gambles
- result in assessments that incur nonpositivity when any gamble in its complement is added to it

Characterization of Maximal Sets of Desirable Gambles

The set \mathcal{D} in $\mathbb{D}(\mathcal{X})$ is maximal if and only if $f \in \mathcal{D} \iff -f \notin \mathcal{D}$ for all nonzero gambles f on \mathcal{X}.
Maximally committal sets of strictly desirable gambles

Maximal coherent sets of (strictly) desirable gambles ...

- are the maximal elements of $\mathbb{D}(\mathcal{X})$ ordered by inclusion
- are not included in any other coherent set of desirable gambles
- result in assessments that incur nonpositivity when any gamble in its complement is added to it

Characterization of Maximal Sets of Desirable Gambles

The set \mathcal{D} in $\mathbb{D}(\mathcal{X})$ is maximal if and only if $f \in \mathcal{D} \Leftrightarrow -f \notin \mathcal{D}$ for all nonzero gambles f on \mathcal{X}.

- are halfspaces that are neither open nor closed
- belong to the set $\hat{\mathbb{D}}(\mathcal{X})$
Maximally committal coherent extensions

Maximal coherent extension of an assessment $A \subseteq \mathcal{L}(\mathcal{X})$. Any encompassing maximally committal coherent set of desirable gambles

Set of maximal coherent extensions $\hat{\mathcal{D}}_A := \{D \in \hat{\mathcal{D}}(\mathcal{X}) : A \subseteq D\}$
Maximally committal coherent extensions

Maximal coherent extension of an assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ Any encompassing maximally committal coherent set of desirable gambles

Set of maximal coherent extensions $\hat{\mathcal{D}}_\mathcal{A} := \{\mathcal{D} \in \hat{\mathcal{D}}(\mathcal{X}) : \mathcal{A} \subseteq \mathcal{D}\}$

Maximal Sets and Nonpositivity Avoidance Theorem

An assessment $\mathcal{A} \subseteq \mathcal{L}(\mathcal{X})$ avoids nonpositivity if and only if $\hat{\mathcal{D}}_\mathcal{A} \neq \emptyset$.
Maximally committal coherent extensions

Maximal coherent extension of an assessment $A \subseteq \mathcal{L} (\mathcal{X})$. Any encompassing maximally committal coherent set of desirable gambles.

Set of maximal coherent extensions: $\hat{\mathcal{D}}_A := \{ D \in \hat{\mathcal{D}} (\mathcal{X}) : A \subseteq D \}$

Maximal Sets and Nonpositivity Avoidance Theorem

An assessment $A \subseteq \mathcal{L} (\mathcal{X})$ avoids nonpositivity if and only if $\hat{\mathcal{D}}_A \neq \emptyset$.

Maximal Sets and Natural Extension Corollary

The least committal extension of an assessment $A \subseteq \mathcal{L} (\mathcal{X})$ that avoids nonpositivity, i.e., its natural extension $\mathcal{E} (A)$, is the intersection $\bigcap \hat{\mathcal{D}}_A$ of the encompassing maximal sets of desirable gambles.
Maximality & transformations

Maximality Preserving Transformations Proposition
A coherence preserving transformation preserves maximality.
Exercises

1. Possibility space \(\{a, b, c\} \); let \(f := (-1, 1, 1) \) be an extreme ray of a maximal set of desirable gambles.
 1.1 Draw the intersection with the sum-one plane of the ones for which respectively \(f + I_b - I_a \) and \(f + I_c - I_a \) are nonstrictly desirable.
 1.2 Also draw their intersection with the sum-minus one plane.

2. Prove the Characterization of Maximal Sets of Desirable Gambles

3. Prove the Maximal Sets and Natural Extension Corollary

4. Prove the Maximality Preserving Transformations Proposition
Outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models
 - Linear previsions
 - Credal sets
 - To lower & upper previsions
 - Simplified variants of desirability
 - From lower previsions
 - Conditional lower previsions
Linear previsions

Linear previsions . . .

- are positive linear normed expectation operators
- provide fair prices for gambles in $\mathcal{L}(\mathcal{X})$
- are equivalent to (finitely additive) probability measures and, on finite \mathcal{X}, to probability mass functions
Linear previsions

Linear previsions ...

- are positive linear normed expectation operators
- provide fair prices for gambles in $\mathcal{L}(\mathcal{X})$
- are equivalent to (finitely additive) probability measures and, on finite \mathcal{X}, to probability mass functions
- belong to the closed convex set $\mathbb{P}(\mathcal{X})$ which is, for finite \mathcal{X}, the unit simplex spanned by the degenerate previsions (or $\{0, 1\}$-valued probability mass functions)
Linear previsions

- are positive linear normed expectation operators
- provide fair prices for gambles in \(\mathcal{L}(\mathcal{X}) \)
- are equivalent to (finitely additive) probability measures and, on finite \(\mathcal{X} \), to probability mass functions
- belong to the closed convex set \(\mathbb{P}(\mathcal{X}) \) which is, for finite \(\mathcal{X} \), the unit simplex spanned by the degenerate previsions (or \(\{0,1\} \)-valued probability mass functions)

provide probabilities for events, as fair prices for their indicators
From linear previsions to sets of desirable gambles

Given a linear prevision \(P \in \mathbb{P}(\mathcal{X}) \), gambles with a strictly positive fair price are strictly desirable:

\[
\mathcal{D}_P := \mathcal{E}(A_P), \quad \text{with} \quad A_P := \{ f \in \mathcal{L}(\mathcal{X}) : P(f) > 0 \}
\]
From linear previsions to sets of desirable gambles

Given a linear prevision $P \in \mathbb{P}(\mathcal{X})$, gambles with a strictly positive fair price are strictly desirable:

$$D_P := \mathcal{E}(A_P), \quad \text{with} \quad A_P := \{f \in \mathcal{L}(\mathcal{X}) : P(f) > 0\}$$

Observations:

- $\{f \in \mathcal{L}(\mathcal{X}) : P(f) = 0\}$ is a linear subspace of $\mathcal{L}(\mathcal{X})$
- So A_P is an open halfspace
- Except in a few borderline cases, so is D_P
- Except in two nontrivial cases, D_P is nonmaximal, so $\hat{D}_P \subseteq D_P$ are nontrivial
From credal sets to sets of desirable gambles

A credal set is a set of linear previsions

Given a credal set $\mathcal{M} \subseteq \mathbb{P}(\mathcal{X})$, gambles with a strictly positive fair price for every linear prevision in the credal set are strictly desirable:

$$D_M := \mathcal{E}(\mathcal{A}_M), \quad \text{with} \quad \mathcal{A}_M := \{f \in \mathcal{L}(\mathcal{X}): (\forall P \in \mathcal{M} : P(f) > 0)\}$$

$$= \bigcap_{P \in \mathcal{M}} \mathcal{A}_P$$
From credal sets to sets of desirable gambles

A credal set is a set of linear previsions

Given a credal set $\mathcal{M} \subseteq \mathbb{P}(\mathcal{X})$, gambles with a strictly positive fair price for every linear prevision in the credal set are strictly desirable:

$$D_{\mathcal{M}} := \mathcal{E}(A_{\mathcal{M}}), \quad \text{with} \quad A_{\mathcal{M}} := \{f \in \mathcal{L}(\mathcal{X}) : (\forall P \in \mathcal{M} : P(f) > 0)\}$$

$$= \bigcap_{P \in \mathcal{M}} A_{P}$$

Observations:

- Each prevision gives rise to a linear constraint in gamble space
- Constraints from linear previsions strictly in the convex hull of \mathcal{M} are redundant
- So the border structure of \mathcal{M} is uniquely important
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example

\[\frac{2}{3} f(a) + \frac{1}{3} f(b) > 0 \]
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example

\[(\frac{1}{3}, 0, \frac{2}{3})\]

\[(\frac{1}{6}, \frac{1}{6}, \frac{1}{2})\]

\[(\frac{2}{3}, 0, \frac{1}{3})\]

\[(\frac{1}{6}, \frac{1}{2}, \frac{1}{3})\]

\[(\frac{2}{3}, \frac{1}{6}, \frac{1}{6})\]

\[(\frac{1}{6}, \frac{2}{3}, \frac{1}{6})\]

\[(\frac{2}{3}, \frac{1}{3}, 0)\]

\[(\frac{1}{3}, \frac{2}{3}, 0)\]

\[(\frac{1}{6}, \frac{2}{3}, \frac{1}{6})\]
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example
From credal sets to sets of desirable gambles: example

\[f(a) + f(b) > 0 \]

\[P_a \rightarrow P_c \rightarrow P_b \]

\[(\frac{1}{3}, 0, \frac{2}{3}) \]

\[(\frac{1}{6}, \frac{1}{3}, \frac{2}{3}) \]

\[(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}) \]

\[(\frac{2}{3}, 0, \frac{1}{3}) \]

\[(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}) \]

\[(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}) \]

\[(\frac{1}{6}, \frac{2}{3}, \frac{1}{6}) \]

\[(\frac{2}{3}, \frac{1}{3}, 0) \]

\[(\frac{1}{3}, \frac{2}{3}, 0) \]
From credal sets to sets of desirable gambles: example
From desirable gambles to credal sets

Given a coherent set of strictly desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$, we use its set of (maximally committal) coherent extensions to derive the associated credal set:

$$
\mathcal{M}_D := \left\{ P \in \mathcal{P}(\mathcal{X}): \mathbb{D}_P \cap \mathbb{D}_D \neq \emptyset \right\}
$$

$$
= \left\{ P \in \mathcal{P}(\mathcal{X}): \mathbb{\hat{D}}_P \cap \mathbb{\hat{D}}_D \neq \emptyset \right\}
$$

Credal Set Conjecture

The credal set $\mathcal{M}_D \subseteq \mathcal{P}(\mathcal{X})$ associated to a coherent set of desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$ is closed and convex.
From desirable gambles to credal sets: example
From desirable gambles to credal sets: example

\[
I_{\{a, c\}} - \frac{1}{3} \\
2I_a - \frac{1}{3} \\
I_{\{a, b\}} - \frac{1}{3} \\
I_{\{b, c\}} - \frac{1}{3}
\]
From desirable gambles to credal sets: example

\[\begin{align*}
I_{\{a, c\}} - \frac{1}{3} & \geq P(\{a\}) \geq \frac{1}{6} \\
I_{\{b, c\}} - \frac{1}{3} & \geq P(\{b\}) \\
I_{\{a, b\}} - \frac{1}{3} & \geq P(\{a, b\}) \\
2I_a - \frac{1}{3} & \geq P(\{a\}) \\
I_a & \geq \frac{1}{3} \\
I_b & \geq \frac{1}{3} \\
I_c & \geq \frac{1}{3}
\end{align*} \]
From desirable gambles to credal sets: example

\[I_{\{a,c\}} - \frac{1}{3} \]

\[I_{\{b,c\}} - \frac{1}{3} \]

\[2I_a - \frac{1}{3} \]

\[I_{\{a,b\}} - \frac{1}{3} \]

\[P(\{a, b\}) \geq \frac{1}{3} \]

\[P(\{a\}) \geq \frac{1}{6} \]
From desirable gambles to credal sets: example

\[I_{\{a,c\}} - \frac{1}{3} \]
\[2I_a - \frac{1}{3} \]
\[I_{\{a,b\}} - \frac{1}{3} \]
\[I_{\{b,c\}} - \frac{1}{3} \]

\[\hat{P}(\{b\}) \geq 0 \]
\[P(\{a, b\}) \geq \frac{1}{3} \]
\[P(\{a\}) \geq \frac{1}{6} \]
From desirable gambles to credal sets: example
From desirable gambles to credal sets: example

$$I_{\{a,c\}} - \frac{1}{3}$$

$$2I_a - \frac{1}{3}$$

$$I_{\{a,b\}} - \frac{1}{3}$$

$$I_{\{b,c\}} - \frac{1}{3}$$

$$P(\{b\}) \geq 0$$

$$P(\{a, b\}) \geq \frac{1}{3}$$

$$P(\{c\}) \geq 0$$

$$P(\{a\}) \geq \frac{1}{6}$$

$$P(\{b, c\}) \geq \frac{1}{3}$$
From desirable gambles to credal sets: example

\[I_{\{a,c\}} - \frac{1}{3} \]

\[I_{\{b,c\}} - \frac{1}{3} \]

\[2I_a - \frac{1}{3} \]

\[I_{\{a\}} \]

\[I_{\{b\}} \]

\[I_{\{a,b\}} - \frac{1}{3} \]

\[\hat{P}(\{b\}) \geq 0 \]

\[P(\{a, b\}) \geq \frac{1}{3} \]

\[P(\{c\}) \geq 0 \]

\[P(\{a\}) \geq \frac{1}{6} \]

\[P(\{b, c\}) \geq \frac{1}{3} \]

\[P(\{a, c\}) \geq \frac{1}{3} \]
From desirable gambles to credal sets: example

\[P(\{a, c\}) \geq \frac{1}{6} \]

\[P(\{a, b\}) \geq \frac{1}{3} \]

\[P(\{b\}) \geq 0 \]

\[P(\{b, c\}) \geq \frac{1}{3} \]

\[P(\{a, c\}) \geq \frac{1}{3} \]
From desirable gambles to credal sets: example
Lower & upper previsions

Lower previsions . . .

- are positive superlinear normed expectation operators
- provide supremum acceptable buying prices for gambles in $\mathcal{L}(\mathcal{X})$
- provide lower probabilities for events

Upper previsions . . .

- are positive sublinear normed expectation operators
- provide infimum acceptable selling prices for gambles in $\mathcal{L}(\mathcal{X})$
- provide upper probabilities for events
Lower & upper previsions

Lower previsions . . .

- are positive superlinear normed expectation operators
- provide supremum acceptable buying prices for gambles in $\mathcal{L}(\mathcal{X})$
- provide lower probabilities for events

Upper previsions . . .

- are positive sublinear normed expectation operators
- provide infimum acceptable selling prices for gambles in $\mathcal{L}(\mathcal{X})$
- provide upper probabilities for events

Prices can be seen as constant gambles, which are trivially linearly ordered
From sets of desirable gambles to lower & upper previsions

Given a coherent set of strictly desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$, we use comparisons with constant gambles to derive lower and upper previsions:

$$P_D(f) := \sup\{\alpha \in \mathbb{R} : f \succ \alpha\} = \sup\{\alpha \in \mathbb{R} : f - \alpha \in \mathcal{D}\}$$

$$P_D(f) := \inf\{\beta \in \mathbb{R} : \beta \succ f\} = \inf\{\beta \in \mathbb{R} : \beta - f \in \mathcal{D}\}$$

Conjugacy: $P_D(f) = -P_D(-f)$ and $P_D(A) = 1 - P_D(A_c)$.
From sets of desirable gambles to lower & upper previsions

Given a coherent set of strictly desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$, we use comparisons with constant gambles to derive lower and upper previsions:

$$P_D(f) := \sup\{\alpha \in \mathbb{R}: f > \alpha\} = \sup\{\alpha \in \mathbb{R}: f - \alpha \in \mathcal{D}\}$$
From sets of desirable gambles to lower & upper previsions

Given a coherent set of strictly desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$, we use comparisons with constant gambles to derive lower and upper previsions:

$$
P_D(f) := \sup\{\alpha \in \mathbb{R} : f \succ \alpha\} = \sup\{\alpha \in \mathbb{R} : f - \alpha \in \mathcal{D}\}
$$

$$
\overline{P}_D(f) := \inf\{\beta \in \mathbb{R} : \beta \succ f\} = \inf\{\beta \in \mathbb{R} : \beta - f \in \mathcal{D}\}
$$
From sets of desirable gambles to lower & upper previsions

Given a coherent set of strictly desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$, we use comparisons with constant gambles to derive lower and upper previsions:

$$P_D(f) := \sup\{\alpha \in \mathbb{R}: f \succ \alpha\} = \sup\{\alpha \in \mathbb{R}: f - \alpha \in \mathcal{D}\}$$

$$\overline{P}_D(f) := \inf\{\beta \in \mathbb{R}: \beta \succ f\} = \inf\{\beta \in \mathbb{R}: \beta - f \in \mathcal{D}\}$$

Conjugacy: $\overline{P}_D(f) = -P_D(-f)$ and $\overline{P}_D(A) = 1 - P_D(A^c)$
Simplified variants of desirability

The border structure of a coherent set of desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$ is not preserved by previsions and credal sets.

Simplified models that eliminate this border structure complexity are useful for moving between models.
Simplified variants of desirability

The border structure of a coherent set of desirable gambles \(\mathcal{D} \subset \mathcal{L}(\mathcal{X}) \) is not preserved by previsions and credal sets.

Simplified models that eliminate this border structure complexity are useful for moving between models.

Set of almost desirable gambles \(\mathcal{D}_{\subseteq} \subset \mathcal{L}(\mathcal{X}) \) must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be closed.

Set of surely desirable gambles \(\mathcal{D}_{\sqsupset} \subset \mathcal{L}(\mathcal{X}) \) must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be open.
Simplified variants of desirability

The border structure of a coherent set of desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$ is not preserved by previsions and credal sets.

Simplified models that eliminate this border structure complexity are useful for moving between models.

Set of almost desirable gambles $\mathcal{D}_{\sqsupseteq} \subset \mathcal{L}(\mathcal{X})$ must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be closed.

Set of surely desirable gambles $\mathcal{D}_{\supseteq} \subset \mathcal{L}(\mathcal{X})$ must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be open.

Simple coherent set of strictly desirable gambles $\mathcal{D}_{\succ} \subset \mathcal{L}(\mathcal{X})$ is a coherent set of strictly desirable gambles such that $\mathcal{D}_{\succ} = \text{int}(\mathcal{D}_{\succ}) \cup \mathcal{L}^+ (\mathcal{X})$.
Simplified variants of desirability

The border structure of a coherent set of desirable gambles $\mathcal{D} \subset \mathcal{L}(\mathcal{X})$ is not preserved by previsions and credal sets.

Simplified models that eliminate this border structure complexity are useful for moving between models.

Set of almost desirable gambles $\mathcal{D}_{\sqsupseteq} \subset \mathcal{L}(\mathcal{X})$ must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be closed.

Set of surely desirable gambles $\mathcal{D}_{\sqsupset} \subset \mathcal{L}(\mathcal{X})$ must satisfy positive scaling, additivity, accepting sure gain, and avoiding sure loss and moreover be open.

Simple coherent set of strictly desirable gambles $\mathcal{D}_{\succ} \subset \mathcal{L}(\mathcal{X})$ is a coherent set of strictly desirable gambles such that $\mathcal{D}_{\succ} = \text{int}(\mathcal{D}_{\succ}) \cup \mathcal{L}^+(\mathcal{X})$.

A set of marginally desirable gambles $\mathcal{G} \subset \mathcal{L}(\mathcal{X})$ consists of the border gambles, i.e., those that are almost but not surely desirable.
Simplified variants of desirability: relationships & example

\[D_\subseteq = \text{cl}(D_\subseteq) = \text{cl}(D) = G + \mathbb{R} \]
\[D_\sqsupset = \text{int}(D_\subseteq) = \text{int}(D) = G + \mathbb{R}^+ \]
\[D_\succ = D_\sqsupset \cup \mathcal{L}^+(X) \]
\[G = D_\subseteq \setminus D_\subseteq \]
Simplified variants of desirability: relationships & example

\[\mathcal{D}_\sqcup = \text{cl}(\mathcal{D}_\sqcup) = \text{cl}(\mathcal{D}) = \mathcal{G} + \mathbb{R} \]
\[\mathcal{D}_\sqcap = \text{int}(\mathcal{D}_\sqcup) = \text{int}(\mathcal{D}) = \mathcal{G} + \mathbb{R}^+ \]
\[\mathcal{D}_\succ = \mathcal{D}_\sqcap \cup \mathcal{L}^+(\mathcal{X}) \]
\[\mathcal{G} = \mathcal{D}_\sqcup \setminus \mathcal{D}_\sqcap \]
Simplified variants of desirability: relationships & example

\[D_{\sqsupseteq} = \text{cl}(D) = \text{cl}(D_{\sqsupseteq}) = G + \mathbb{R} \]

\[D_{\sqsubset} = \text{int}(D_{\sqsupseteq}) = \text{int}(D) = G + \mathbb{R}^+ \]

\[D_{\succ} = D_{\sqsubset} \cup L^+(X) \]

\[G = D_{\sqsupseteq} \setminus D_{\sqsubset} \]
Simplified variants of desirability: relationships & example

\[D_{\sqsupseteq} = \text{cl}(D_{\sqsupseteq}) = \text{cl}(D) = G + R \]
\[D_{\sqsubseteq} = \text{int}(D_{\sqsupseteq}) = \text{int}(D) = G + R^+ \]
\[D_{\succeq} = D_{\sqsubseteq} \cup L^+(X) \]
\[G = D_{\sqsubseteq} \setminus D_{\sqsubseteq} \]
Simplified variants of desirability: relationships & example

\[D \sqsubseteq = cl(D \sqsubseteq) = cl(D) = G + \mathbb{R} \]
\[D \sqsubset = int(D \sqsubseteq) = int(D) = G + \mathbb{R}^+ \]
\[D \succ = D \sqsubseteq \cup \mathcal{L}^+(X) \]
\[G = D \sqsubseteq \setminus D \sqsubset \]
From lower previsions to sets of desirable gambles
Given a lower prevision P defined on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$, how do we derive an associated set of desirable gambles?
From lower previsions to sets of desirable gambles
Given a lower prevision \(P \) defined on \(\mathcal{K} \subseteq \mathcal{L}(\mathcal{X}) \), how do we derive an associated set of desirable gambles?

Constant additivity is a rationality requirement derived from coherent sets of marginal gambles: \(\mathcal{P}_D(f + \alpha) = \mathcal{P}_D(f) + \alpha \)

A marginal gamble is a gamble with lower prevision zero derived from any gamble in \(\mathcal{K} \) by constant additivity: \(\mathcal{G}_P(f) := f - \mathcal{P}(f) \)
From lower previsions to sets of desirable gambles

Given a lower prevision P defined on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$, how do we derive an associated set of desirable gambles?

Constant additivity is a rationality requirement derived from coherent sets of marginal gambles: $P_D(f + \alpha) = P_D(f) + \alpha$

A marginal gamble is a gamble with lower prevision zero derived from any gamble in \mathcal{K} by constant additivity: $G_P(f) := f - P(f)$

Use marginal as marginally desirable gambles:

$$D_P := \mathcal{E}(A_P) \quad \text{with} \quad A_P := G_P + \mathbb{R}^+ \quad \text{and} \quad G_P := G_P(\mathcal{K})$$
From lower previsions to sets of desirable gambles

Given a lower prevision \mathcal{P} defined on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$, how do we derive an associated set of desirable gambles?

Constant additivity is a rationality requirement derived from coherent sets of marginal gambles: $\mathcal{P}_D(f + \alpha) = \mathcal{P}_D(f) + \alpha$

A marginal gamble is a gamble with lower prevision zero derived from any gamble in \mathcal{K} by constant additivity: $\mathcal{G}_\mathcal{P}(f) := f - \mathcal{P}(f)$

Use marginal as marginally desirable gambles:

$$\mathcal{D}_\mathcal{P} := \mathcal{E}(\mathcal{A}_\mathcal{P}) \quad \text{with} \quad \mathcal{A}_\mathcal{P} := \mathcal{G}_\mathcal{P} + \mathbb{R}^+ \quad \text{and} \quad \mathcal{G}_\mathcal{P} := \mathcal{G}_\mathcal{P}(\mathcal{K})$$
From lower previsions to sets of desirable gambles
Given a lower prevision P defined on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$, how do we derive an associated set of desirable gambles?

Constant additivity is a rationality requirement derived from coherent sets of marginal gambles: $P_D(f + \alpha) = P_D(f) + \alpha$

A marginal gamble is a gamble with lower prevision zero derived from any gamble in \mathcal{K} by constant additivity: $G_P(f) := f - P(f)$

Use marginal as marginally desirable gambles:

$$\mathcal{D}_P := \mathcal{E}(A_P) \quad \text{with} \quad A_P := G_P + \mathbb{R}^+ \quad \text{and} \quad G_P := G_P(\mathcal{K})$$
Translating desirability concepts to lower previsions

Avoiding sure loss for a lower prevision P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$

... corresponds to \mathcal{A}_P avoiding sure (or partial) loss:

$$\forall g \in \text{posi}(\mathcal{G}_P) : \sup g \geq 0.$$
Translating desirability concepts to lower previsions

Avoiding sure loss for a lower prevision P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ corresponds to A_P avoiding sure (or partial) loss:

$$\forall g \in \text{posi}(G_P) : \sup g \geq 0.$$

Natural extension E of a lower previsions P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ to $\mathcal{L}(\mathcal{X})$ corresponds to D_P:

$$E(f) = \sup\{\alpha \in \mathbb{R} : (\exists g \in \text{posi}(G_P) : f - \alpha \geq g)\}$$
Translating desirability concepts to lower previsions

Avoiding sure loss for a lower prevision \underline{P} on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ corresponds to $\mathcal{A}_{\underline{P}}$ avoiding sure (or partial) loss:

$$\forall g \in \text{posi}(\mathcal{G}_{\underline{P}}) : \sup g \geq 0.$$

Natural extension \underline{E} of a lower previsions \underline{P} on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ to $\mathcal{L}(\mathcal{X})$ corresponds to $\mathcal{D}_{\underline{P}}$:

$$\underline{E}(f) = \sup\{\alpha \in \mathbb{R} : (\exists g \in \text{posi}(\mathcal{G}_{\underline{P}}) : f - \alpha \geq g)\}$$
Translating desirability concepts to lower previsions

Avoiding sure loss for a lower prevision P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$
corresponds to A_P avoiding sure (or partial) loss:

$$\forall g \in \text{posi}(\mathcal{G}_P) : \sup g \geq 0.$$

Natural extension E of a lower previsions P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ to $\mathcal{L}(\mathcal{X})$
corresponds to D_P:

$$E(f) = \sup\{\alpha \in \mathbb{R} : (\exists g \in \text{posi}(\mathcal{G}_P) : f - \alpha \geq g)\}$$
Translating desirability concepts to lower previsions (c’d)
Natural extension E of a lower previsions P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ to $\mathcal{L}(\mathcal{X})$ corresponds to D_P:

$$E(f) = \sup\{\alpha \in \mathbb{R} : (\exists g \in \text{posi}(\mathcal{G}_P) : f - \alpha \geq g)\}$$
Translating desirability concepts to lower previsions (c’d)

Natural extension E of a lower previsions P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ to $\mathcal{L}(\mathcal{X})$ corresponds to D_P:

$$E(f) = \sup\{\alpha \in \mathbb{R} : (\exists g \in \text{posi}(G_P) : f - \alpha \geq g)\}$$

Coherence for lower previsions P on $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X})$ corresponds to coherence of D_P:

$$\forall f \in G_P : \forall g \in \text{posi}(G_P) : \sup (g - f) \geq 0$$
Natural versus regular extension

Why would we bother with nonsimple sets of strictly desirable gambles?
Natural versus regular extension
Why would we bother with nonsimple sets of strictly desirable gambles?

\[Pf := \min \{ \frac{3}{4}f(a) + \frac{1}{4}f(b), \frac{1}{3}f(a) + \frac{2}{3}f(b), f(c) \} \]
Natural versus regular extension
Why would we bother with nonsimple sets of strictly desirable gambles?

\[Pf := \min \left\{ \frac{3}{4}f(a) + \frac{1}{4}f(b), \frac{1}{3}f(a) + \frac{2}{3}f(b), f(c) \right\} \]
Natural versus regular extension
Why would we bother with nonsimple sets of strictly desirable gambles?

\[
\begin{align*}
\mathcal{M}_P &= \min \left\{ \frac{3}{4} f(a) + \frac{1}{4} f(b), \frac{1}{3} f(a) + \frac{2}{3} f(b), f(c) \right\} \\
\mathcal{D}_P|\{a, b\} &= \inf \left\{ \min \left\{ \frac{3}{4} f(a) + \frac{1}{4} f(b), \frac{1}{3} f(a) + \frac{2}{3} f(b), f(c) \right\} \right\}
\end{align*}
\]
Natural versus regular extension

Why would we bother with nonsimple sets of strictly desirable gambles?

\[Pf := \min\left\{ \frac{3}{4} f(a) + \frac{1}{4} f(b), \frac{1}{3} f(a) + \frac{2}{3} f(b), f(c) \right\} \]

\[P(\cdot|\{a, b\}) := P_{D_P}|\{a, b\} = \inf \]

\[R_P := D_P \cup \{ f \in \text{cl}(D_P) : \overline{P}(f) > 0 \} \]
Natural versus regular extension
Why would we bother with nonsimple sets of strictly desirable gambles?

\[P_f := \min \left\{ \frac{3}{4} f(a) + \frac{1}{4} f(b), \frac{1}{3} f(a) + \frac{2}{3} f(b), f(c) \right\} \]

\[P(\cdot | \{a, b\}) := P_{\mathcal{D}_P}\{|a, b\} = \inf \]

\[\mathcal{R}_P := \mathcal{D}_P \cup \{ f \in \text{cl} (\mathcal{D}_P) : \overline{P}(f) > 0 \} \]

\[R(\cdot | \{a, b\}) := P_{\mathcal{R}_P}\{|a, b\} = \min \left\{ \frac{3}{4} f(a) + \frac{1}{4} f(b), \frac{1}{3} f(a) + \frac{2}{3} f(b) \right\} \]
Exercises I

1. Possibility space \(\{a, b, c\} \); draw the intersection of \(D_{P_i} \) with the sum-one and sum-minus one planes for the linear previsions defined by

\[
P_1(f) = \frac{1}{2}f(a) + \frac{1}{4}f(b) + \frac{1}{4}f(c) \quad \text{and} \quad P_2(f) = \frac{1}{3}f(a) + \frac{2}{3}f(b)
\]

2. Calculate the set of desirable gambles \(D_{\mathcal{M}} \) corresponding to the given credal set \(\mathcal{M} \):
Exercises II

3. Calculate the credal set \mathcal{M}_D corresponding to the given set of desirable gambles D:

4. Give the corresponding simplified variants for all the sets of desirable gambles appearing up until now in this exercise series.

5. Possibility space $\{a, b, c\}$; a lower prevision P is specified as follows: the lower probability of $\{c\}$ and $\{b, c\}$ are, respectively, $\frac{1}{6}$ and $\frac{1}{4}$; the supremum upper buying price for $(-3, 3, -2)$ is -2.

5.1 Calculate D_P and use it to check ...

5.2 whether P avoids sure loss,

5.3 whether P is coherent,

5.4 calculate the natural extension of P to $I\{a, b\}$, $I\{b, c\}$, and $I\{c, a\}$.
References

Cedric A. B. Smith.
Consistency in statistical inference and decision.

Peter M. Williams.
Indeterminate probabilities.

Peter M. Williams.
Coherence, strict coherence and zero probabilities.
In Fifth International Congress of Logic, Methodology and Philosophy of Science, volume VI, pages 29–33, 1975.

Peter M. Williams.
Notes on conditional previsions.
F. J. Girón and S. Rios.
Quasi-bayesian behaviour: A more realistic approach to decision making?

Peter C. Fishburn.
The axioms of subjective probability.

Teddy Seidenfeld, Mark J. Schervish, and Joseph B. Kadane.
Decisions without ordering.

Teddy Seidenfeld, Mark J. Schervish, and Joseph B. Kadane.
A representation of partially ordered preferences.
Robert Nau.
The shape of incomplete preferences.

Peter Walley.
Statistical Reasoning with Imprecise Probabilities.

Peter Walley.
Towards a unified theory of imprecise probability.

Serafín Moral.
Epistemic irrelevance on sets of desirable gambles.
Inés Couso and Serafín Moral.
Sets of desirable gambles and credal sets.

Gert de Cooman and Erik Quaeghebeur.
Exchangeability for sets of desirable gambles.

Gert de Cooman and Erik Quaeghebeur.
Exchangeability and sets of desirable gambles.
Conditionally accepted.

Gert de Cooman and Erik Quaeghebeur.
Infinite exchangeability for sets of desirable gambles.
Some authors require full conglomerability as a coherence criterion for sets of desirable gambles $\mathcal{D} \subseteq \mathcal{L}(\mathcal{X})$, which is conglomerability relative to all partitions \mathcal{B} of \mathcal{X}:

\[
\mathcal{B}\text{-Conglomerability}: \quad (\forall B \in \mathcal{B} : f1_B \in \mathcal{D}) \Rightarrow f \in \mathcal{D}
\]

This is of importance for deriving conditional sets of desirable gambles separately specified on infinite partitions.
Extra material: Lexicographic models
Can we make sense of mostly open cones of nonstrictly desirable gambles?

\[
D = D_r + \epsilon D_i
\]

\[h := h_r + \epsilon h_i,\]

with \(\epsilon\) an infinitesimal quantity and \(h_r\) and \(h_i\) real-valued.
Extra material: Lexicographic models
Can we make sense of mostly open cones of nonstrictly desirable gambles?

We can look at it as a partial view of a more complex uncertainty model:
- **Infinitesimal precision** is used when defining payoffs
- **Lexicographic utility** can be used for finite possibility spaces
 (2-tier for this example)
Extra material: Lexicographic models
Can we make sense of mostly open cones of nonstrictly desirable gambles?

We can look at it as a partial view of a more complex uncertainty model:

- **Infinitesimal precision** is used when defining payoffs
- **Lexicographic utility** can be used for finite possibility spaces
 (2-tier for this example)
 - lexicographic gamble $h := h_r + \epsilon h_i$, with ϵ an infinitesimal quantity and h_r and h_i real-valued
 - set of desirable lexicographic gambles $\mathcal{D} := \mathcal{D}_r + \epsilon \mathcal{D}_i$
Extra material: Lexicographic models
Can we make sense of mostly open cones of nonstrictly desirable gambles?

We can look at it as a partial view of a more complex uncertainty model:

Infinitesimal precision is used when defining payoffs

Lexicographic utility can be used for finite possibility spaces

(2-tier for this example)

- lexicographic gamble \(h := h_r + \epsilon h_i \),
 with \(\epsilon \) an infinitesimal quantity and \(h_r \) and \(h_i \) real-valued
- set of desirable lexicographic gambles \(\mathcal{D} := \mathcal{D}_r + \epsilon \mathcal{D}_i \)
- original shows lexicographic gambles that are constant over the tiers: \(f_c := f + \epsilon f \), with \(f \) real-valued
Reference

Joseph Y. Halpern.
Lexicographic probability, conditional probability, and nonstandard probability.
Full section outline

Reasoning about and with sets of desirable gambles

Derived coherent sets of desirable gambles

Combining sets of desirable gambles

Partial preference orders

Maximally committal sets of strictly desirable gambles

Relationships with other, nonequivalent models