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We investigate a constrained optimization problem for which there is uncertainty
about a constraint parameter. Our aim is to reformulate it as a (constrained)
optimization problem without uncertainty. This is done by recasting the original
problem as a decision problem under uncertainty. We give results for a number
of different types of uncertainty models—linear and vacuous previsions, and
possibility distributions—and for two different optimality criteria for decision
problems under uncertainty—maximinity and maximality.
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1. Introduction

Consider the following optimization problem: maximize a bounded real-
valued function f—defined on a set X—over all x in X that satisfy the
constraint xRY , where Y is a random variable taking values in a set Y
and R is a relation on X × Y. The aim is to reduce this problem to a
(constrained) optimization problem from which the uncertainties present in
the description of the constraint are eliminated.

This optimization problem is ill-posed: it is underspecified, as there is no
unique way of interpreting what is meant by maximizing a function over an
uncertain domain; it might also be overspecified, as the constraint may not
be satisfiable for some values Y may take. Therefore, in Sec. 2, we introduce
some assumptions and reformulate the optimization problem as a well-posed
decision problem: optimal solutions correspond to optimal decisions.
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In Sec. 3, we investigate what results can be obtained for different types
of uncertainty models for the random variable Y—linear1 and vacuous2,3

previsions, and possibility distributions4— and for two different optimality
criteria5 for decision problems—maximinity and maximality. We present
general results for a number of model-criteria pairings. For illustration
purposes, we include a running example in which X = Y := R and R :=≤.

We end in Sec. 4 with some conclusions.

Some notational conventions We always let x and z be elements of X ,
y of Y, B ⊆ X , and A ⊆ Y. We introduce the following sets:

xR := {y ∈ Y : xRy}, BR :=
⋃

x∈B xR, BR :=
⋂

x∈B xR,

Ry := {x ∈ X : xRy}, RA :=
⋃

y∈ARy, RA :=
⋂

y∈ARy.
(1)

Also note that BR ⊆ BR, RA ⊆ RA. (And similarly for 6R.)
The indicator function of a set C is denoted IC ; it takes the value 1 on

C and is 0 elsewhere.

2. Reformulation as a decision problem under uncertainty

As we came to realize above, we need to decide which elements of X can be
considered as optimal choices for the original optimization problem.

No uncertainty First consider the case without uncertainty about Y ,
where we know that Y takes some specific value y in Y. We can then
define an equivalent unconstrained optimization problem by maximizing the
real-valued function gy on X defined by gy := fIRy + LI6Ry = L + fLIRy,
where L is some real number strictly smaller than inf f and fL := f −L > 0.
Because then, assuming Ry 6= ∅, sup f |Ry = sup gy, where f |Ry denotes the
restriction of f to Ry; if Ry = ∅, we also use the unconstrained problem to
replace the overspecified original one. We call L the penalty value, because
it penalizes breaking the constraint.

For our running example, we get the following illustrative picture:

f(x)

xy

Ry 6Ry

sup f |Ry

gy(x)

xy

L

sup gy
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Indeterminacy Now consider the case where Y can be the value y1 or y2,
and where nothing is specified about the relative likelihood of either value.
Which X -values should we now consider as optimal? The objective-function
view of our running example does not seem to provide any intuition on how
to decide in favor of some x:

gy1(x)

xy1

L

sup gy1

x1 y2

gy2(x)

xy1x1 y2

L

sup gy2

We need to look at each x as a potential optimal solution and compare them
on the basis of their consequences. For this, we introduce a so-called utility
function Gx on Y for each x (formally, Gx(y) and gy(x) are identical):

Gx := f(x)IxR + LIx 6R = L+ fL(x)IxR. (2)

It returns the utility of choosing x for the different possible values of Y .
For a selection of X -values ( xx1 y1 y2x3 x4 x5 x6 ), this gives:

Gx(yi) x = x3

i

L

sup gy1

sup gy2

1 2

x = x1

i1 2

x = x4

i1 2

x = y1

i1 2

x = x5

i1 2

x = y2

i1 2

x = x6

i1 2

For pessimists, x1 is a good optimum, because Gx1 has the highest minimal
value. Optimists could call y2 optimal, as Gy2 has the highest maximum. But
we need not take any such extreme stance: pairwise comparisons of the utility
functions show that x1 and y2 are the only x that could be considered as
optimal in the sense that they have undominated utility functions, meaning
that Gz 6> Gx (pointwise) for all z.

So we see that there is no uniquely reasonable way of labeling an X -value
as optimal. The optimality criteria illustrated in the previous paragraph are
respectively called maximinity, maximaxity, and maximality. The second
is seldomly used because it can lead to risky decision making. We will be
using maximinity and maximality; their formal definitions will follow after
we have looked at the impact of probabilistic uncertainty about Y .

Probabilistic uncertainty Next consider the case where the possibili-
ties y1 and y2 are additionally considered to be equally likely. In such a
situation, one usually works with expected utility, i.e., g := Pu(G·) is used



April 8, 2010 11:57 WSPC - Proceedings Trim Size: 9in x 6in constopt

4

to find the optimal solutions, where Pu is the uniform prevision (linear
expectation operator) on {y1, y2}, so g := 1

2 (gy1 + gy1). It turns out that
both maximinity and maximality reduce to maximizing expected utility in
this case. We get:

g(x)

xy1 y2

sup g

x1

L

Pu(Gx) x = x1

L

sup gy1

sup gy2

x = y1 x = y2

Optimality criteria When the uncertainty about Y is expressed using a
more general uncertainty model, this reduction does not necessarily happen.
In this paper, we consider uncertainty models that can be written as a
coherent lower prevision P , essentially a lower envelope of linear previsions
(or expectation operators).2,3 Its conjugate coherent upper prevision P is
formally defined by P = −P (−·).2,3

The optimality criteria, exhibiting both the indeterminacy and expected
utility aspects, are then expressed as follows:5

Maximinity The set of maximin solutions is

argsupx∈X P (Gx) = argsupx∈X fL(x)P (xR), (3)

where the right-hand side follows from Eq. (2), the irrelevance of
additive constants, fL(x) > 0, and the positive homogeneity2,3 of P .

Maximality A solution x is maximal if and only if

infz∈X P (Gx −Gz) = infz∈X P
(
fL(x)IxR − fL(z)IzR

)
≥ 0. (4)

We need to compute the lower probability of events of the type xR and lower
previsions of utility function differences Gx−Gz. Because of the sublinearity
of coherent upper previsions,2,3 all maximin solutions are maximal.

3. Formulation for specific uncertainty models

We now investigate a number of interesting special cases. For each case, both
computing P (xR) and P (Gx−Gz), and reducing the resulting optimization
problems (3) and (4) to a useful form are, in general, nontrivial steps.

Linear previsions When the uncertainty about Y is described by a linear
prevision P , both criteria reduce to maximizing expected utility. The set of
optimal solutions is argsupx∈X P (Gx) = argsupx∈X fL(x)P (xR). Note the
influence of L.
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For our running example, we see that xR = [x,+∞). Define the distri-
bution function on X as FP := P ((−∞, ·]), then the set of optimal solutions
for a linear prevision P with continuous FP is argsup fL(1− FP ).

Vacuous previsions Vacuous previsions express ignorance. The general
case consists of a vacuous prevision relative to an event A ⊆ Y, for which
P := inf ·|A and P := sup ·|A.

For our running example, we let A := [a, b] ⊂ R.
For maximinity, we combine the vacuous prevision’s definition with

Eq. (3); the optimal x are those that maximize P (Gx) = L+fL(x) inf[IxR|A].
So, by evaluating the expression inf[IxR|A] = inf IxR∩A, we discover that
P (Gx) = f(x) if A ⊆ xR and L otherwise. The expression A ⊆ xR can be
expanded to (∀y ∈ A)xRy and from this and Eq. (1), we can deduce it is
equivalent to x ∈ RA. So the set of optimal solutions is argsup f |RA. It does
not depend on L.

In our running example, ≤[a, b] =
⋂

y∈[a,b]{x ∈ X : x ≤ y} = (−∞, a] by
Eq. (1), so the set of solutions is argsup f |(−∞,a].

For maximality, we combine the vacuous prevision’s definition with
Eq. (4); those x such that P (Gx−Gz) = sup

(
fL(x)IxR∩A−fL(z)IzR∩A

)
≥ 0

for all z are optimal.
An explicit expression for P (Gx −Gz) can be found by considering all

possible positions A can be in relative to xR and zR. We find:

fL(x) if A ∩ xR ∩ z 6R 6= ∅,
0 if A ⊆ x 6R ∧A ∩ z 6R 6= ∅,

max{0, f(x)− f(z)} if A ∩ xR ∩ z 6R = ∅ ∧A ∩ xR 6= ∅ ∧A ∩ z 6R 6= ∅,
f(x)− f(z) if A ⊆ zR ∧A ∩ xR 6= ∅,
−fL(z) if A ⊆ x 6R ∩ zR.

In the first three cases, P (Gx −Gz) is always nonnegative, in the fourth it
can be both positive and negative, and in the last it is always negative.

Therefore, only the last two cases are important when checking the
condition for an x to be maximal, i.e., to avoid its being nonmaximal. After
some predicate logic manipulations, we find:

infz∈X P (Gx −Gz) ≥ 0 ⇔ RA = ∅ ∨
(
x ∈ RA ∧ f(x) ≥ sup f |RA

)
.

If RA = ∅, all x in X are maximal; otherwise, only those x in RA such that
f(x) ≥ sup f |RA are. The set of maximal solutions does not depend on L.

For our running example, as ≤[a, b] = (−∞, a] and ≤[a, b] = (−∞, b] by
Eq. (1), we see that those x ≤ b such that f(x) ≥ sup f |(−∞,a] are maximal.
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Possibility distributions The general case we consider here consists of
a possibility distribution π on Y, so for an event A, P (A) := supπ|A and
P (A) := 1− supπ|Ac .2,4,6

For our running example, we consider a continuous possibility distribu-
tion π with minimal mode c ∈ R; i.e., π(c) = 1 and π|<c < 1.

We only give results for maximinity. We combine the possibility dis-
tribution’s definition with Eq. (3); those x that maximize P (Gx) =
L + fL(x)(1 − supπ|x 6R) are optimal. So the set of optimal solutions is
argsupx∈X fL(x)(1− supπ|x 6R). Notice that this set depends on L.

For our running example, as supπ|x 6≤ = π(min{x, c}), the set of solutions
is argsup fL(1− π)|<c.

4. Conclusions

Using maximinity as an optimality criterion results in less complicated
mathematical problems as compared to the maximality criterion. This is
visible for the vacuous prevision case, and it is the reason we did not give a
maximality solution for the possibility distribution case.

We encountered the same difference in complexity in preliminary inves-
tigations of p-boxes7 and independent products2 of a vacuous and linear
previsions as uncertainty models. However, the maximinity criterion can also
result in quite complicated expressions, as we encountered when working
with linear-vacuous2 previsions. Clearly, more work must be done in order
to be able to deal with this complexity in practical situations.
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