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Toy problem: two-component massless rod
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Toy problem: two-component massless rod, tensile load
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Toy problem: two-component massless rod, tensile load
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Goal Maximize x under the constraint that d, < D.



Two-component massless rod, tensile load: FE analysis
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Goal Maximize x under the constraint that d, < D.




Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions
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Goal Maximize x under the constraint that d, < D.



Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions
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Goal Maximize x under the constraint that d, < D.



Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions
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Solution solving the system (analytically) gives

— FL1-x FL x
dl_a Y, dz dl+aY

Goal Maximize x under the constraint that . x+ - < FL.
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Goal Maximize x under the constraint that d, < D.



Two-component rod, tensile load: design optimization
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Goal Maximize x under the constraint that IY;I" 3, < ba,



Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y| and Y, This problem is

» a classical constrained optimization problem;
» considered ‘solved’.
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Goal Maximize x under the constraint that ly;l‘ +E<ba



Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y7 and Y»> This problem is
> a classical constrained optimization problem;
» considered ‘solved’.

Uncertainty about elastic moduli Y7 and Y> This problem is

» a constrained optimization problem under uncertainty;
» not well-posed as such.
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Goal Maximize x under the constraint that IY;I‘ +E< B



Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y7 and Y»> This problem is
> a classical constrained optimization problem;
» considered ‘solved’.
Uncertainty about elastic moduli Y1 and Y, This problem is
» a constrained optimization problem under uncertainty;
» not well-posed as such.
Approach:
» reformulate as a well-posed decision problem;
» solve the decision problem, i.e.,
derive a classical constrained optimization problem.
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Goal Maximize x under the constraint that ‘Y;I‘ +E <P
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A constrained optimization problem under uncertainty

Goal Maximize f(x) under the constraint that xRY .
x optimization variable (values in Z")
f objective function (from 2 to R)
Y random variable (realizations y in %)
R relationon 2" x %'



A constrained optimization problem under uncertainty

Goal Maximize f(x) under the constraint that xRY .

x optimization variable (values in 2")
| objective function (from 2" to R)
Y random variable (realizations y in %)
R relationon 2" x %'

Decision problem Find the optimal decisions x:

» associate a utility function with every decision z:

G.(y) =f(2)lr+LLg = {j;(z), ZZ’ with penalty value L < inff;




A constrained optimization problem under uncertainty

Goal Maximize f(x) under the constraint that xRY .
x optimization variable (values in 2")
| objective function (from 2" to R)
Y random variable (realizations y in %)
R relationon 2" x %,
Decision problem Find the optimal decisions x:

» associate a utility function with every decision z:

G.(y) =f(2)Lr+ Ll = {f(Z)v o with penalty value L < inff;
L, Ry,
f(x) G.(y)
e \/ e
g L
z x ZR R

» choose an optimality criterion, e.g., maximinity, maximality.



Uncertainty models

Goal Faced with uncertainty about y in ¢/, find optimal x in .2~ given
an optimality criterion and utility functions G, on % for all zin Z".



Uncertainty models
Random variable Y Formal model for the uncertainty about y in %

Goal Faced with uncertainty about y in ¢/, find optimal x in .2~ given
an optimality criterion and utility functions G, on % for all zin 2".



Uncertainty models
Random variable ¥ Formal model for the uncertainty about y in %

Lower and upper expectation With (almost) all typical uncertainty models
correspond lower and upper expectation operators (E and E), or
(almost) equivalently, a set of linear expectation operators ./ :

E//(G) = infge » E(G)a E///(G) = SUPpe y E(G)a

Mg ={E:E>E}.

Goal Faced with uncertainty about y in ¢/, find optimal x in .2 given
an optimality criterion and utility functions G, on % for all zin 2.



Uncertainty models
Random variable ¥ Formal model for the uncertainty about y in %

Lower and upper expectation With (almost) all typical uncertainty models
correspond lower and upper expectation operators (E and E), or
(almost) equivalently, a set of linear expectation operators .# :

E 4(G) =infre 4 E(G),  E.z(G):=supgc 4 E(G),

Examples  » probabilities (measures, PMF, PDF, CDF);
» upper and/or lower of the above
(inner/outer measures, Choquet capacities, p-boxes);
> intervals, vacuous expectations: E,(G) := infyea G();
» possibility distributions, belief functions, ...
» convex mixtures of the lot (e.g., contamination models).

Goal Faced with uncertainty about y in ¢/, find optimal x in .2 given
an optimality criterion and utility functions G, on % for all zin 2".



Optimality criteria: maximizing expected utility generalized

Goal Faced with uncertainty about y in %/, find optimal x in .2~ given
an optimality criterion and utility functions G, on & for all zin 2.



Optimality criteria: maximizing expected utility generalized
Maximinity Worst-case reasoning; optimal x maximize the lower (minimal)
expected utility (P(A) := E(I4)):

E(Gy) = SuPze%E(Gz)
= SuPze%E(f(Z)IZR +LIZR) =L+sup,c o (f(Z) - L)B(ZR)-

Goal Faced with uncertainty about y in ¢/, find optimal x in 2~ given
an optimality criterion and utility functions G, on % for all zin 2.



Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal)
expected utility (P(A) = E(I4)):

E(Gy) =sup,c y E(G;)

<

= SUP;cy E(f(Z)IzR +L[zR> =L+sup,cy (f(z) - L)B(ZR)-

Maximality Optimal x are undominated in pairwise comparisons with all
other decisions:

0< infze%E(Gx -Gy)
= infze%E((f(x) _f(Z))IxRﬂzR + (f(x) - L)IxRﬁzR + (L _f(z))IxRﬂzR> .

Goal Faced with uncertainty about y in ¢/, find optimal x in 2~ given
an optimality criterion and utility functions G, on & for all zin 2.



Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal)
expected utility (P(A) := E(I4)):

E(Gy) = sup,c y E(G;)
= SuUp.cy E(f(Z)IZR + LIZR) =L+sup.cy (f(Z) - L)B(ZR)-

Maximality Optimal x are undominated in pairwise comparisons with all
other decisions:

0 <infcy E(Gx - GZ)
=infe 9 E((f(x> *f(z))IxRﬁzR + (f(x) - L)IxRﬁzR + (L *f(z>)IxRﬂzR) .

Others Maximaxity, E-admissibility, interval dominance

Goal Faced with uncertainty about y in ¢/, find optimal x in 2"~ given
an optimality criterion and utility functions G, on & for all zin 2.



Probabilistic and indeterminacy aspects of uncertainty
Example 2" =% =R, R:=<.

f(x) gy(x) = Gi(y)
supfley | L supg

L +
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Probabilistic and indeterminacy aspects of uncertainty
X =% =R, R =<.

f(x) gy(x) = Gi(y)
supf |ry /\/ SUPgyt
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Indeterminacy Assume y can be either y; or y,, but nothing more is known.
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Probabilistic and indeterminacy aspects of uncertainty
Example 2" =% =R, R:=<.

fx) 8y(¥) = Gu(y)
supf|ry /—\/ SUP&y 1 o

L t

X3 X X4 }"'1 X5 XpXeX y X

Probabilistic Assume that y; and y, are equally likely.

8y, 18
Sup8y, ylz =2 (x)
sup #1582 — supg,,
1N Y2 X
x



Objective, deliverables, and a disclaimer

Research objective decision problem solutions for combinations
of various uncertainty models and optimality criteria.

Deliverables A solution toolbox for a specific, but quite general class
of decision problems under uncertainty.



Objective, deliverables, and a disclaimer

Research objective decision problem solutions for combinations
of various uncertainty models and optimality criteria.

Deliverables A solution toolbox for a specific, but quite general class
of decision problems under uncertainty.

Disclaimer No reduction in the computational complexity;
one faces
» an optimization problem to find
the uncertainty-independent constraints,
» the resulting classical constrained optimization problem.



Results: probabilities

Optimal decision when Y is described by a probability P.
Maximizing expected utility
» General case:
argsup_c - (f(z) — L)P(zR).

» Example: 2 =% =R, R :=<.

argsup g (f(z) — L) (1 = F(z)),

where Fy(x) .= P(R<y) =1 —-P(x <)
is a continuous CDF.



Results: vacuous models

Optimal decision when Y is described by
a vacuous lower expectation relativeto A C %'.

Maximinity ~ » General case:

argsup,cpaf(z), RA:=(\yeaRy.

» Example: 2" =% =R, R:=<,A = [a,b].

argsup,,f(z)-



Results: vacuous models

Optimal decision when Y is described by
a vacuous lower expectation relativeto A C %'.

General case:
argsup,egaf(z), RA:=[\ycaRy.
Example: 2" =% =R, R:=<,A:=[a,D].
argsup,. ./ (2).
Maximality ~ » General case:
x€RA suchthat f(x)=sup,cgaf(z), RA:=UcaRy.
» Example: 2" =% =R, R:=<,A = [a,D].

x<b suchthat f(x)>sup..,f(z).



Results: possibility distributions

Optimal decision when Y is described by
a possibility distribution 7z on &; P(A) := 1 —sup,cg\4 ().
Maximinity ~ » General case:

argsup.c o (£(2) ~ L) (1 — supycp 7).

» Example: 2" =% =R, R:=<, continuous & with
minimal mode ¢ € R.

argsup__.(f(z) —L) (1—7(z)).



Bridge design: vehicle colliding into pillar

Vehicle parameters mass m, stiffness &, initial speed vy,
average deceleration a, and swerve angle «.

Bridge parameters pillar design loads F— (longitud.) and F'; (perpendic.).
What is the optimal lateral distance x between the vehicle and
curb that ensures structural integrity ?




Bridge design: vehicle colliding into pillar
Vehicle parameters mass m, stiffness &, initial speed vy,
average deceleration a, and swerve angle o.

Bridge parameters pillar design loads F— (longitud.) and F'; (perpendic.).
What is the optimal lateral distance x between the vehicle and
curb that ensures structural integrity ?

Structural integrity constraint

Fuen COS@S F_, Fyan sin0 < Fy, Fon = \/mk(v3—2ax/sina).



Bridge design: optimization problem under uncertainty
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Goal Choose an optimal x
under the constraint that
Fyeh.cosa < F_ and 1 .
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Bridge design: optimization problem under uncertainty
Objective function Based on dimensions-dependent building costs:

o1~ Toziolf )]
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f(x):==—45B((Li +2d)*+2L3), 4
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where B = 14, L, = 33, L, = 15 for a typical 3-span bridge.

Goal Choose an optimal x Ta —
under the constraint that T O /a’
Fyen.cosa < F_ and 1

Fyen. sinot < F .



Bridge design: optimization problem under uncertainty
Objective function Based on dimensions-dependent building costs:

6 —log;olf(x)]

—6.5
f(x):=—45B((Li +2d)*+2L3), 4

0 10 20 30 40 50 x[m]
where B = 14, L, = 33, L, = 15 for a typical 3-span bridge.

Penalty value L was difficult to assess, so a number of values
between —10°3 and —10%- were tried.

Parameters k =300 [kN/m]; Y = (m,vq,a, @), independent product.

Goal Choose an optimal x Ta —
under the constraint that T " /a’
Fyen. cosa < F_ and i

Fyen. sinot < F . ven. __



Bridge design: uncertainty models for the parameters

Mass m [tf] » Lorry: normal with mean 20, standard deviation 12,
and realistic range [12,40].
» Car: vacuous in the interval [.5,1.6].

Initial velocity vy [km/h]

Highway: 80, 10, [50, 100].

Urban: 40, 8, [30,70].

Courtyard: lognormal 15, 5, [5,30].
Parking: lognormal 5, 5, [5,20].

\4

vYvyy

Average deceleration a [m/s?] Lognormal 4, 1.3, [1,5].

Swerve angle o [°] Normal 30, 3, [8,45].



Bridge design: maximinity results for different vehicle types
Lorry — Highway F_ = 1000, F; =500

Lorry — Urban F— =500, F| =250

Lorry — Courtyard F— =150, F, =75

Car — Courtyard F_ =50, F| =25

Car — Parking F— =40, F, =25



Bridge design: maximinity results for different vehicle types
Lorry — Highway F_ = 1000, F, =500
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Lorry — Urban F— =500, F| =250
Lorry — Courtyard F_ =150, F| =75
Car — Courtyard F— =50, F| =25
Car — Parking F— =40, F| =25



Bridge design: maximinity results for different vehicle types

Lorry — Highway F_ = 1000, F| = 500, x = 42 for L = —108.

PdR --d

Lorry — Urban F— =500, F, =250
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Lorry — Courtyard F— =150, F| =75
Car — Courtyard F— =50, F| =25
Car —Parking F— =40, F| =25



Bridge design: maximinity results for different vehicle types
Lorry — Highway F_ = 1000, F| = 500, x = 42 for L = —108.

Lorry — Urban F_ =500, F|, =250, x = 20 for L = —108.

Lorry — Courtyard F— =150, F; =75
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Car — Courtyard F— =50, F| =25
Car —Parking F— =40, F| =25



Bridge design: maximinity results for different vehicle types
Lorry — Highway F_ = 1000, F| = 500, x = 42 for L = —108.

Lorry — Urban F_ =500, F|, =250, x = 20 for L = —108.

Lorry — Courtyard F— =150, F| =75, x=23.6for L= —10".

Car — Courtyard F_ =50, F| =25
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Car —Parking F— =40, F| =25



Bridge design: maximinity results for different vehicle types
Lorry — Highway F_ = 1000, F| = 500, x = 42 for L = —103.

Lorry — Urban F_ =500, F, =250, x =20 for L = —108.

Lorry — Courtyard F_ =150, F; =75, x=3.6 for L= —10".

Car — Courtyard F— =50, F| =25, x=4.0for L= —10".

Car — Parking F— =40, F| =25
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Bridge design: maximinity results for different vehicle types
Lorry — Highway F— = 1000, F|, = 500, x = 42 for L = —108.

Lorry — Urban F_ =500, F, = 250, x =20 for L = —108.

Lorry — Courtyard F_ =150, F =75, x=3.6for L = —107.

Car — Courtyard F— =50, F| =25,x=4.0for L= —10".

Car — Parking F— =40, F, =25,x=1.8for L= —10".



Bridge design: maximality results for different vehicle types

Car — Courtyard F— =50, F| =25, x € [2.4,4.0] for L= —12-105.

Car — Parking F— =40, F| =25,x¢€[0.4,1.7] for L= —7-10°,
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