A constrained optimization problem under uncertainty

Raluca Andrei, Gert de Cooman,
Erik Quaeghebeur & Keivan Shariatmadar

CMU Games & Decision Meeting

March 3rd, 2010
Toy problem: two-component massless rod

\[
Y_1 \quad Y_2
\]

\[
l_1 = (1 - x)L \quad l_2 = xL
\]

Goal: Maximize \(x\) under the constraint that \(d_2 < D\).
Toy problem: two-component massless rod, tensile load

\[l_1 = (1 - x)L \quad l_2 = xL \]
Toy problem: two-component massless rod, tensile load

Goal Maximize x under the constraint that $d_2 < D$.
Two-component massless rod, tensile load: FE analysis

Goal Maximize x under the constraint that $d_2 < D$.
Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions

\[
\begin{bmatrix}
 c_1 + c_2 & -c_2 \\
 -c_2 & c_2
\end{bmatrix}
\begin{bmatrix}
 d_1 \\
 d_2
\end{bmatrix} = \begin{bmatrix}
 0 \\
 F
\end{bmatrix}, \quad c_i = \frac{Y_i a}{l_i}.
\]

Goal Maximize \(x\) under the constraint that \(d_2 < D\).
Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions

\[
\begin{bmatrix}
 c_1 + c_2 & -c_2 \\
 -c_2 & c_2
\end{bmatrix}
\begin{bmatrix}
 d_1 \\
 d_2
\end{bmatrix} = \begin{bmatrix}
 0 \\
 F
\end{bmatrix}, \quad c_i = \frac{Y_i a}{l_i}.
\]

Solution solving the system (analytically) gives

\[
d_1 = \frac{FL}{a} \frac{1-x}{Y_1}, \quad d_2 = d_1 + \frac{FL}{a} \frac{x}{Y_2}.
\]

Goal Maximize \(x \) under the constraint that \(d_2 < D \).
Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions

\[
\begin{bmatrix}
c_1 + c_2 & -c_2 \\
-c_2 & c_2
\end{bmatrix}
\begin{bmatrix}
d_1 \\
d_2
\end{bmatrix}
= \begin{bmatrix} 0 \\ F \end{bmatrix}, \quad c_i = \frac{Y_i a}{l_i}.
\]

Solution solving the system (analytically) gives

\[
d_1 = \frac{F L}{a} \frac{1-x}{Y_1}, \quad d_2 = d_1 + \frac{F L}{a} \frac{x}{Y_2}.
\]

Goal Maximize \(x\) under the constraint that \(\frac{1-x}{Y_1} + \frac{x}{Y_2} < \frac{D a}{F L}\).

Goal Maximize \(x\) under the constraint that \(d_2 < D\).
Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y_1 and Y_2 This problem is ▶ a classical constrained optimization problem; ▶ considered 'solved'.

Uncertainty about elastic moduli Y_1 and Y_2 This problem is ▶ a constrained optimization problem under uncertainty; ▶ not well-posed as such.

Approach: ▶ reformulate as a well-posed decision problem; ▶ solve the decision problem, i.e., derive a classical constrained optimization problem.

\[
\begin{align*}
\text{l} = (1-x)L & \quad \text{l}_2 = xL \\
F & \quad d_1 \\
F & \quad d_2
\end{align*}
\]

Goal Maximize x under the constraint that
\[
\frac{1-x}{Y_1} + \frac{x}{Y_2} < \frac{Da}{FL}.
\]
Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y_1 and Y_2. This problem is

- a classical constrained optimization problem;
- considered ‘solved’.

Goal
Maximize x under the constraint that
\[
\frac{1-x}{Y_1} + \frac{x}{Y_2} < \frac{Da}{FL}.
\]
Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y_1 and Y_2 This problem is
 ▶ a classical constrained optimization problem;
 ▶ considered ‘solved’.

Uncertainty about elastic moduli Y_1 and Y_2 This problem is
 ▶ a constrained optimization problem under uncertainty;
 ▶ not well-posed as such.

Goal Maximize x under the constraint that $\frac{1-x}{Y_1} + \frac{x}{Y_2} < \frac{Da}{FL}$.
Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y_1 and Y_2 This problem is
 ▶ a classical constrained optimization problem;
 ▶ considered ‘solved’.

Uncertainty about elastic moduli Y_1 and Y_2 This problem is
 ▶ a constrained optimization problem under uncertainty;
 ▶ not well-posed as such.

Approach:
 ▶ reformulate as a well-posed decision problem;
 ▶ solve the decision problem, i.e.,
 derive a classical constrained optimization problem.

Goal Maximize x under the constraint that $\frac{1-x}{Y_1} + \frac{x}{Y_2} < \frac{Da}{FL}$.
Overview

Toy problem

General problem formulation

Uncertainty models

Optimality criteria

Probabilistic and indeterminacy aspects of uncertainty

Objective

Results

Application: bridge design for vehicle-pillar collisions
A constrained optimization problem under uncertainty

Goal Maximize $f(x)$ under the constraint that xRY.

- x optimization variable (values in X)
- f objective function (from X to \mathbb{R})
- Y random variable (realizations y in Y)
- R relation on $X \times Y$.
A constrained optimization problem under uncertainty

Goal Maximize $f(x)$ under the constraint that xRY.
- x optimization variable (values in \mathcal{X})
- f objective function (from \mathcal{X} to \mathbb{R})
- Y random variable (realizations y in \mathcal{Y})
- R relation on $\mathcal{X} \times \mathcal{Y}$.

Decision problem Find the optimal decisions x:
- associate a utility function with every decision z:

$$G_z(y) = f(z)I_{zR} + LI_{zR} = \begin{cases} f(z), & zRy, \\ L, & z\notR y, \end{cases}$$

with penalty value $L < \inf f$;
A constrained optimization problem under uncertainty

Goal Maximize $f(x)$ under the constraint that xRY.

- x optimization variable (values in \mathcal{X})
- f objective function (from \mathcal{X} to \mathbb{R})
- Y random variable (realizations y in \mathcal{Y})
- R relation on $\mathcal{X} \times \mathcal{Y}$.

Decision problem Find the optimal decisions x:

- associate a utility function with every decision z:

$$G_z(y) = f(z) I_{zR} + LI_{z\notR} = \begin{cases} f(z), & zRy, \\ L, & z\notRy, \end{cases}$$

with penalty value $L < \inf f$;

- choose an optimality criterion, e.g., maximinity, maximality.
Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.

Uncertainty models

Formal model for the uncertainty about y in \mathcal{Y}.

Lower and upper expectation With (almost) all typical uncertainty models correspond lower and upper expectation operators (E and E^*), or (almost) equivalently, a set of linear expectation operators \mathcal{M}:

$$E_{\mathcal{M}}(G) := \inf_{E \in \mathcal{M}} E(G),$$

$$E^*_{\mathcal{M}}(G) := \sup_{E \in \mathcal{M}} E(G),$$

$\mathcal{M}_{E_{\mathcal{M}}} := \{E : E \geq E^*\}$.

Examples

▶ probabilities (measures, PMF, PDF, CDF);
▶ upper and/or lower of the above (inner/outer measures, Choquet capacities, p-boxes);
▶ intervals, vacuous expectations: $E_A(G) := \inf_{y \in A} G(y)$;
▶ possibility distributions, belief functions, ...
▶ convex mixtures of the lot (e.g., contamination models).
Uncertainty models

Random variable Y Formal model for the uncertainty about y in \mathcal{Y}.

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Uncertainty models

Random variable Y Formal model for the uncertainty about y in \mathcal{Y}.

Lower and upper expectation With (almost) all typical uncertainty models correspond lower and upper expectation operators (E and \overline{E}), or (almost) equivalently, a set of linear expectation operators \mathcal{M}:

$$E_{\mathcal{M}}(G) := \inf_{E \in \mathcal{M}} E(G), \quad \overline{E}_{\mathcal{M}}(G) := \sup_{E \in \mathcal{M}} E(G),$$

$$\mathcal{M}_E := \{E : E \geq E\}.$$

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Uncertainty models

Random variable Y Formal model for the uncertainty about y in \mathcal{Y}.

Lower and upper expectation With (almost) all typical uncertainty models correspond lower and upper expectation operators (\underline{E} and \overline{E}), or (almost) equivalently, a set of linear expectation operators \mathcal{M}:

\[
\underline{E}_\mathcal{M}(G) := \inf_{E \in \mathcal{M}} E(G), \quad \overline{E}_\mathcal{M}(G) := \sup_{E \in \mathcal{M}} E(G),
\]

\[
\mathcal{M}_E := \{E : E \geq E\}.
\]

Examples

- probabilities (measures, PMF, PDF, CDF);
- upper and/or lower of the above (inner/outer measures, Choquet capacities, p-boxes);
- intervals, vacuous expectations: $E_A(G) := \inf_{y \in A} G(y)$;
- possibility distributions, belief functions, . . .
- convex mixtures of the lot (e.g., contamination models).

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Optimality criteria: maximizing expected utility generalized

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal) expected utility ($P(A) := E(I_A)$):

$$E(G_x) = \sup_{z \in X} E(G_z)$$
$$= \sup_{z \in X} E(f(z)I_{zR} + LI_{zR}) = L + \sup_{z \in X} (f(z) - L)P(zR).$$

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal) expected utility ($P(A) := E(I_A)$):

$$E(G_x) = \sup_{z \in \mathcal{X}} E(G_z) = \sup_{z \in \mathcal{X}} E(f(z)I_{z \in R} + LI_{z \in R}) = L + \sup_{z \in \mathcal{X}} (f(z) - L)P(z \in R).$$

Maximality Optimal x are undominated in pairwise comparisons with all other decisions:

$$0 \leq \inf_{z \in \mathcal{X}} E(G_x - G_z) = \inf_{z \in \mathcal{X}} E \left((f(x) - f(z))I_{x \in R \cap z \in R} + (f(x) - L)I_{x \in R \cap z \notin R} + (L - f(z))I_{x \notin R \cap z \in R} \right).$$

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal) expected utility ($P(A) := E(I_A)$):

$$E(G_x) = \sup_{z \in \mathcal{X}} E(G_z)$$

$$= \sup_{z \in \mathcal{X}} E(f(z)I_{zR} + LI_{zR}) = L + \sup_{z \in \mathcal{X}} (f(z) - L) P(zR).$$

Maximality Optimal x are undominated in pairwise comparisons with all other decisions:

$$0 \leq \inf_{z \in \mathcal{X}} E(G_x - G_z)$$

$$= \inf_{z \in \mathcal{X}} E\left((f(x) - f(z)) I_{xR \cap zR} + (f(x) - L) I_{xR \cap zR} + (L - f(z)) I_{xR \cap zR} \right).$$

Others Maximaxity, E-admissibility, interval dominance

Goal Faced with uncertainty about y in \mathcal{Y}, find optimal x in \mathcal{X} given an optimality criterion and utility functions G_z on \mathcal{Y} for all z in \mathcal{X}.
Probabilistic and indeterminacy aspects of uncertainty

Example $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$.

$$f(x)$$

$\sup f|_{R_y}$

R_y y R_y x

$g_y(x) = G_x(y)$

$\sup g_y$

L

y x
Probabilistic and indeterminacy aspects of uncertainty

Example $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$.

Indeterminacy Assume y can be either y_1 or y_2, but nothing more is known.
Probabilistic and indeterminacy aspects of uncertainty

Example \(\mathcal{X} = \mathcal{Y} := \mathbb{R}, \ R := \leq \).

Probabilistic Assume that \(y_1 \) and \(y_2 \) are equally likely.
Objective, deliverables, and a disclaimer

Research objective decision problem solutions for combinations of various uncertainty models and optimality criteria.

Deliverables A solution toolbox for a specific, but quite general class of decision problems under uncertainty.
Objective, deliverables, and a disclaimer

Research objective decision problem solutions for combinations of various uncertainty models and optimality criteria.

Deliverables A solution toolbox for a specific, but quite general class of decision problems under uncertainty.

Disclaimer No reduction in the computational complexity; one faces

- an optimization problem to find the uncertainty-independent constraints,
- the resulting classical constrained optimization problem.
Results: probabilities

Optimal decision when Y is described by a probability P.

Maximizing expected utility

- General case:

$$\text{argsup}_{z \in X} (f(z) - L)P(zR).$$

- Example: $X = Y := \mathbb{R}$, $R := \leq$.

$$\text{argsup}_{z \in \mathbb{R}} (f(z) - L) \left(1 - F(z) \right),$$

where $F_Y(x) := P(\mathbb{R}_{\leq x}) = 1 - P(x \leq)$

is a continuous CDF.
Results: vacuous models

Optimal decision when Y is described by a vacuous lower expectation relative to $A \subseteq Y$.

Maximinity

- General case:

$$\text{argsup}_{z \in RA} f(z), \quad RA := \bigcap_{y \in A} Ry.$$

- Example: $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$, $A := [a, b]$.

$$\text{argsup}_{z \leq a} f(z).$$
Results: vacuous models

Optimal decision when Y is described by a vacuous lower expectation relative to $A \subseteq \mathcal{Y}$.

Maximinity

General case:

$$\text{argsup}_{z \in RA} f(z), \quad RA := \bigcap_{y \in A} Ry.$$

Example: $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$, $A := [a, b]$.

$$\text{argsup}_{z \leq a} f(z).$$

Maximality

General case:

$$x \in RA \quad \text{such that} \quad f(x) = \sup_{z \in RA} f(z), \quad RA := \bigcup_{y \in A} Ry.$$

Example: $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$, $A := [a, b]$.

$$x \leq b \quad \text{such that} \quad f(x) \geq \sup_{z \leq a} f(z).$$
Optimal decision when Y is described by a possibility distribution π on \mathcal{Y}; $P(A) := 1 - \sup_{y \in \mathcal{Y} \setminus A} \pi(y)$.

Maximinity

- General case:

$$\arg\sup_{z \in \mathcal{X}} (f(z) - L) \left(1 - \sup_{y \in z \leq R} \pi(y) \right).$$

- Example: $\mathcal{X} = \mathcal{Y} := \mathbb{R}$, $R := \leq$, continuous π with minimal mode $c \in \mathbb{R}$.

$$\arg\sup_{z < c} (f(z) - L) \left(1 - \pi(z) \right).$$
Bridge design: vehicle colliding into pillar

Vehicle parameters mass m, stiffness k, initial speed v_0, average deceleration a, and swerve angle α.

Bridge parameters pillar design loads F_\parallel (longitud.) and F_\perp (perpendicular).

What is the optimal lateral distance x between the vehicle and curb that ensures structural integrity?
Bridge design: vehicle colliding into pillar

Vehicle parameters mass m, stiffness k, initial speed v_0, average deceleration a, and swerve angle α.

Bridge parameters pillar design loads F_\parallel (longitud.) and F_\perp (perpendicular).

What is the optimal lateral distance x between the vehicle and curb that ensures structural integrity?

Structural integrity constraint

$$F_{\text{veh.}} \cos \alpha \leq F_\parallel, \quad F_{\text{veh.}} \sin \alpha \leq F_\perp, \quad F_{\text{veh.}} = \sqrt{mk(v_0^2 - 2ax / \sin \alpha)}.$$
Bridge design: optimization problem under uncertainty

Goal Choose an optimal x under the constraint that $F_{\text{veh.}} \cos \alpha \leq F_\parallel$ and $F_{\text{veh.}} \sin \alpha \leq F_\perp$.
Bridge design: optimization problem under uncertainty

Objective function Based on dimensions-dependent building costs:

\[f(x) := -45B((L_1 + 2d)^2 + 2L_2^2), \]

where \(B = 14, L_1 = 33, L_2 = 15 \) for a typical 3-span bridge.

Goal Choose an optimal \(x \) under the constraint that \(F_{\text{veh}} \cos \alpha \leq F = \) and \(F_{\text{veh}} \sin \alpha \leq F_{\perp} \).
Bridge design: optimization problem under uncertainty

Objective function

Based on dimensions-dependent building costs:

\[
f(x) := -45B \left((L_1 + 2d)^2 + 2L_2^2 \right),
\]

where \(B = 14, L_1 = 33, L_2 = 15 \) for a typical 3-span bridge.

Penalty value

\(L \) was difficult to assess, so a number of values between \(-10^{6.3}\) and \(-10^{8.6}\) were tried.

Parameters

\(k = 300 \) [kN/m]; \(Y = (m, v_0, a, \alpha) \), independent product.

Goal

Choose an optimal \(x \) under the constraint that

\(F_{\text{veh. cos } \alpha} \leq F_{\perp} \) and \(F_{\text{veh. sin } \alpha} \leq F_{\perp} \).
Bridge design: uncertainty models for the parameters

Mass m [t]
- Lorry: normal with mean 20, standard deviation 12, and realistic range $[12, 40]$.
- Car: vacuous in the interval $[.5, 1.6]$.

Initial velocity v_0 [km/h]
- Highway: 80, 10, $[50, 100]$.
- Urban: 40, 8, $[30, 70]$.

Average deceleration a [m/s2] Lognormal 4, 1.3, $[1, 5]$.

Swerve angle α [$^\circ$] Normal 30, 3, $[8, 45]$.
Bridge design: maximinity results for different vehicle types

Lorry – Highway \(F_\parallel = 1000, \ F_\perp = 500 \)

Lorry – Urban \(F_\parallel = 500, \ F_\perp = 250 \)

Lorry – Courtyard \(F_\parallel = 150, \ F_\perp = 75 \)

Car – Courtyard \(F_\parallel = 50, \ F_\perp = 25 \)

Car – Parking \(F_\parallel = 40, \ F_\perp = 25 \)
Bridge design: maximinity results for different vehicle types

Lorry – Highway \(F_\parallel = 1000, F_\perp = 500 \)

Lorry – Urban \(F_\parallel = 500, F_\perp = 250 \)

Lorry – Courtyard \(F_\parallel = 150, F_\perp = 75 \)

Car – Courtyard \(F_\parallel = 50, F_\perp = 25 \)

Car – Parking \(F_\parallel = 40, F_\perp = 25 \)
Bridge design: maximinity results for different vehicle types

Lorry – Highway \(F_\parallel = 1000, F_\perp = 500, x = 42 \) for \(L = -10^8 \).

Lorry – Urban \(F_\parallel = 500, F_\perp = 250 \)

Lorry – Courtyard \(F_\parallel = 150, F_\perp = 75 \)

Car – Courtyard \(F_\parallel = 50, F_\perp = 25 \)

Car – Parking \(F_\parallel = 40, F_\perp = 25 \)
Bridge design: maximinity results for different vehicle types

Lorry – Highway \(F_{\parallel} = 1000, F_{\perp} = 500, x = 42 \) for \(L = -10^8 \).

Lorry – Urban \(F_{\parallel} = 500, F_{\perp} = 250, x = 20 \) for \(L = -10^8 \).

Lorry – Courtyard \(F_{\parallel} = 150, F_{\perp} = 75 \)

Car – Courtyard \(F_{\parallel} = 50, F_{\perp} = 25 \)

Car – Parking \(F_{\parallel} = 40, F_{\perp} = 25 \)
Bridge design: maximinity results for different vehicle types

Lorry – Highway $F_\parallel = 1000$, $F_\perp = 500$, $x = 42$ for $L = -10^8$.
Lorry – Urban $F_\parallel = 500$, $F_\perp = 250$, $x = 20$ for $L = -10^8$.
Lorry – Courtyard $F_\parallel = 150$, $F_\perp = 75$, $x = 3.6$ for $L = -10^7$.
Car – Courtyard $F_\parallel = 50$, $F_\perp = 25$

Car – Parking $F_\parallel = 40$, $F_\perp = 25$
Bridge design: maximinity results for different vehicle types

Lorry – Highway $F_\parallel = 1000, F_\perp = 500, x = 42$ for $L = -10^8$.
Lorry – Urban $F_\parallel = 500, F_\perp = 250, x = 20$ for $L = -10^8$.
Lorry – Courtyard $F_\parallel = 150, F_\perp = 75, x = 3.6$ for $L = -10^7$.
Car – Courtyard $F_\parallel = 50, F_\perp = 25, x = 4.0$ for $L = -10^7$.
Car – Parking $F_\parallel = 40, F_\perp = 25$
Bridge design: maximinity results for different vehicle types

Lorry – Highway \(F_\parallel = 1000, F_\perp = 500, x = 42 \) for \(L = -10^8 \).

Lorry – Urban \(F_\parallel = 500, F_\perp = 250, x = 20 \) for \(L = -10^8 \).

Lorry – Courtyard \(F_\parallel = 150, F_\perp = 75, x = 3.6 \) for \(L = -10^7 \).

Car – Courtyard \(F_\parallel = 50, F_\perp = 25, x = 4.0 \) for \(L = -10^7 \).

Car – Parking \(F_\parallel = 40, F_\perp = 25, x = 1.8 \) for \(L = -10^7 \).
Bridge design: maximality results for different vehicle types

Car – Courtyard \(F_\parallel = 50, \ F_\perp = 25, \ x \in [2.4, 4.0] \) for \(L = -12 \cdot 10^6 \).

Car – Parking \(F_\parallel = 40, \ F_\perp = 25, \ x \in [0.4, 1.7] \) for \(L = -7 \cdot 10^6 \).