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Toy problem: two-component massless rod

, tensile load

Y1 Y2 a

L

l1 = (1− x)L l2 = xL

Y1 Y2 F

d1 d2

Goal Maximize x under the constraint that d2 < D.
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Two-component massless rod, tensile load: FE analysis

FE analysis 3 nodes, boundary conditions[
c1 + c2 −c2
−c2 c2

][
d1
d2

]
=

[
0
F

]
, ci =

Yia
li
.

Solution solving the system (analytically) gives

d1 =
FL
a

1−x
Y1

, d2 = d1 +
FL
a

x
Y2
.

Goal Maximize x under the constraint that 1−x
Y1

+ x
Y2

< Da
FL .
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Two-component rod, tensile load: design optimization

Precisely known elastic moduli Y1 and Y2 This problem is
I a classical constrained optimization problem;
I considered ‘solved’.

Uncertainty about elastic moduli Y1 and Y2 This problem is
I a constrained optimization problem under uncertainty;
I not well-posed as such.

Approach:
I reformulate as a well-posed decision problem;
I solve the decision problem, i.e.,

derive a classical constrained optimization problem.
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A constrained optimization problem under uncertainty

Goal Maximize f (x) under the constraint that xRY .

x optimization variable (values in X )
f objective function (from X to R)
Y random variable (realizations y in Y )
R relation on X ×Y .

Decision problem Find the optimal decisions x:

I associate a utility function with every decision z:

Gz(y) = f (z)IzR +LIz6R =

{
f (z), zRy,
L, z6Ry,

with penalty value L < inf f ;

f (x)

xz

f (z)

Gz(y)

yzR z6R
L

f (z)

I choose an optimality criterion, e.g., maximinity, maximality.
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Uncertainty models

Random variable Y Formal model for the uncertainty about y in Y .

Lower and upper expectation With (almost) all typical uncertainty models
correspond lower and upper expectation operators (E and E), or
(almost) equivalently, a set of linear expectation operators M :

EM (G) := infE∈M E(G), EM (G) := supE∈M E(G),

ME := {E : E ≥ E}.

Examples I probabilities (measures, PMF, PDF, CDF);
I upper and/or lower of the above

(inner/outer measures, Choquet capacities, p-boxes);
I intervals, vacuous expectations: EA(G) := infy∈A G(y);
I possibility distributions, belief functions, . . .
I convex mixtures of the lot (e.g., contamination models).

Goal Faced with uncertainty about y in Y , find optimal x in X given
an optimality criterion and utility functions Gz on Y for all z in X .
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Optimality criteria: maximizing expected utility generalized

Maximinity Worst-case reasoning; optimal x maximize the lower (minimal)
expected utility (P(A) := E(IA)):

E(Gx) = supz∈X E(Gz)

= supz∈X E
(
f (z)IzR +LIz 6R

)
= L+ supz∈X

(
f (z)−L

)
P(zR).

Maximality Optimal x are undominated in pairwise comparisons with all
other decisions:

0≤ infz∈X E(Gx−Gz)

= infz∈X E
((

f (x)− f (z)
)
IxR∩zR +

(
f (x)−L

)
IxR∩z6R +

(
L− f (z)

)
Ix 6R∩zR

)
.

Others Maximaxity, E-admissibility, interval dominance

Goal Faced with uncertainty about y in Y , find optimal x in X given
an optimality criterion and utility functions Gz on Y for all z in X .
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Probabilistic and indeterminacy aspects of uncertainty
Example X = Y := R, R :=≤.

f (x)

xyRy 6Ry

sup f |Ry

gy(x) = Gx(y)

xy
L

supgy

Indeterminacy Assume y can be either y1 or y2, but nothing more is known.

gy1(x)

xy1
L

supgy1

x1 x2

gy2(x)

xx1 y2
L

supgy2

x2

Gx3(yi)

i
L

supgy1

supgy2

1 2

Gx1(yi)

i1 2

Gx4(yi)

i1 2

Gy1(yi)

i1 2

Gx5(yi)

i1 2

Gx2(yi)

i1 2

Gx6(yi)

i1 2
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Probabilistic and indeterminacy aspects of uncertainty
Example X = Y := R, R :=≤.

f (x)

x

sup f |Ry

x1 y1 x2x3 x4 x5 x6

gy(x) = Gx(y)

xy
L

supgy

Probabilistic Assume that y1 and y2 are equally likely.
gy1+gy2

2 (x)

xy1 y2

sup
gy1+gy2

2 = supgy1

supgy2

x1
x2

L

E(Gx3)

L

supgy1

supgy2

E(Gx1) E(Gx4) E(Gy1) E(Gx5) E(Gx2) E(Gx6)



Objective, deliverables, and a disclaimer

Research objective decision problem solutions for combinations
of various uncertainty models and optimality criteria.

Deliverables A solution toolbox for a specific, but quite general class
of decision problems under uncertainty.

Disclaimer No reduction in the computational complexity;
one faces

I an optimization problem to find
the uncertainty-independent constraints,

I the resulting classical constrained optimization problem.
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Results: probabilities

Optimal decision when Y is described by a probability P.

Maximizing expected utility filler text

I General case:

argsupz∈X (f (z)−L)P(zR).

I Example: X = Y := R, R :=≤.

argsupz∈R
(
f (z)−L

)(
1−F(z)

)
,

where FY(x) := P(R≤x) = 1−P(x≤)
is a continuous CDF.



Results: vacuous models
Optimal decision when Y is described by
a vacuous lower expectation relative to A⊆ Y .

Maximinity I General case:

argsupz∈RA f (z), RA :=
⋂

y∈A Ry.

I Example: X = Y := R, R :=≤, A := [a,b].

argsupz≤a f (z).

Maximality I General case:

x ∈ RA such that f (x) = supz∈RA f (z), RA :=
⋃

y∈A Ry.

I Example: X = Y := R, R :=≤, A := [a,b].

x≤ b such that f (x)≥ supz≤a f (z).
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Results: possibility distributions

Optimal decision when Y is described by
a possibility distribution π on Y ; P(A) := 1− supy∈Y \A π(y).

Maximinity I General case:

argsupz∈X
(
f (z)−L

)(
1− supy∈z6R π(y)

)
.

I Example: X = Y := R, R :=≤, continuous π with
minimal mode c ∈ R.

argsupz<c
(
f (z)−L

)(
1−π(z)

)
.



Bridge design: vehicle colliding into pillar
Vehicle parameters mass m, stiffness k, initial speed v0,

average deceleration a, and swerve angle α .

Bridge parameters pillar design loads F= (longitud.) and F⊥ (perpendic.).
What is the optimal lateral distance x between the vehicle and
curb that ensures structural integrity?

veh.: m, k

pillar

x
αv0

a

F⊥

F=

Fveh.

Structural integrity constraint

Fveh. cosα ≤ F=, Fveh. sinα ≤ F⊥, Fveh. =
√

mk(v2
0−2ax/sinα).
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Bridge design: optimization problem under uncertainty

Objective function Based on dimensions-dependent building costs:

f (x) :=−45B
(
(L1 +2d)2 +2L2

2
)
,

x [m]0 10 20 30 40 50

− log10|f (x)|−6

−6.5

−7

where B = 14, L1 = 33, L2 = 15 for a typical 3-span bridge.

Penalty value L was difficult to assess, so a number of values
between −106.3 and −108.6 were tried.

Parameters k = 300 [kN/m]; Y = (m,v0,a,α), independent product.

Goal Choose an optimal x
under the constraint that
Fveh. cosα ≤ F= and
Fveh. sinα ≤ F⊥.

m, k

x
αv0

a

F⊥

F=

Fveh.
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Bridge design: uncertainty models for the parameters

Mass m [t] I Lorry: normal with mean 20, standard deviation 12,
and realistic range [12,40].

I Car: vacuous in the interval [.5,1.6].

Initial velocity v0 [km/h] blabla

I Highway: 80, 10, [50,100].
I Urban: 40, 8, [30,70].
I Courtyard: lognormal 15, 5, [5,30].
I Parking: lognormal 5, 5, [5,20].

Average deceleration a [m/s2] Lognormal 4, 1.3, [1,5].

Swerve angle α [°] Normal 30, 3, [8,45].



Bridge design: maximinity results for different vehicle types

Lorry – Highway F= = 1000, F⊥ = 500

, x = 42 for L =−108.

Lorry – Urban F= = 500, F⊥ = 250

, x = 20 for L =−108.

Lorry – Courtyard F= = 150, F⊥ = 75

, x = 3.6 for L =−107.

Car – Courtyard F= = 50, F⊥ = 25

, x = 4.0 for L =−107.

Car – Parking F= = 40, F⊥ = 25

, x = 1.8 for L =−107.



Bridge design: maximinity results for different vehicle types
Lorry – Highway F= = 1000, F⊥ = 500

, x = 42 for L =−108.

35 40 45 50 55 60
98

98.5

99

99.5

100

50.3 99.0001

98.1721

98.5572

99.227

d

P

PdR −− d

35 40 45 50 55 60
−4

−3

−2

−1

x 10
8
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d*
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Optimum d −− L
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Bridge design: maximinity results for different vehicle types
Lorry – Highway F= = 1000, F⊥ = 500, x = 42 for L =−108.

Lorry – Urban F= = 500, F⊥ = 250, x = 20 for L =−108.

Lorry – Courtyard F= = 150, F⊥ = 75

, x = 3.6 for L =−107.
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Car – Courtyard F= = 50, F⊥ = 25

, x = 4.0 for L =−107.

Car – Parking F= = 40, F⊥ = 25

, x = 1.8 for L =−107.



Bridge design: maximinity results for different vehicle types
Lorry – Highway F= = 1000, F⊥ = 500, x = 42 for L =−108.

Lorry – Urban F= = 500, F⊥ = 250, x = 20 for L =−108.

Lorry – Courtyard F= = 150, F⊥ = 75, x = 3.6 for L =−107.

Car – Courtyard F= = 50, F⊥ = 25

, x = 4.0 for L =−107.
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Car – Parking F= = 40, F⊥ = 25

, x = 1.8 for L =−107.



Bridge design: maximinity results for different vehicle types
Lorry – Highway F= = 1000, F⊥ = 500, x = 42 for L =−108.

Lorry – Urban F= = 500, F⊥ = 250, x = 20 for L =−108.

Lorry – Courtyard F= = 150, F⊥ = 75, x = 3.6 for L =−107.

Car – Courtyard F= = 50, F⊥ = 25, x = 4.0 for L =−107.

Car – Parking F= = 40, F⊥ = 25

, x = 1.8 for L =−107.
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Bridge design: maximinity results for different vehicle types

Lorry – Highway F= = 1000, F⊥ = 500, x = 42 for L =−108.

Lorry – Urban F= = 500, F⊥ = 250, x = 20 for L =−108.

Lorry – Courtyard F= = 150, F⊥ = 75, x = 3.6 for L =−107.

Car – Courtyard F= = 50, F⊥ = 25, x = 4.0 for L =−107.

Car – Parking F= = 40, F⊥ = 25, x = 1.8 for L =−107.



Bridge design: maximality results for different vehicle types

Car – Courtyard F= = 50, F⊥ = 25, x ∈ [2.4,4.0] for L =−12 ·106.

Car – Parking F= = 40, F⊥ = 25, x ∈ [0.4,1.7] for L =−7 ·106.
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