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Abstract

We consider immediate predictive inference, where a sub-

ject, using a number of observations of a finite number

of exchangeable random variables, is asked to coherently

model his beliefs about the next observation, in terms of

a predictive lower prevision. We study when such predic-

tive lower previsions are representation insensitive, mean-

ing that they are essentially independent of the choice of

the (finite) set of possible values for the random variables.

Such representation insensitive predictive models have very

interesting properties, and among such models, the ones

produced by the Imprecise Dirichlet-Multinomial Model

are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,

lower prevision, coherence, exchangeability, representation

invariance, representation insensitivity, Imprecise Dirichlet-

Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-

servations of a certain phenomenon. We represent these

observations by N random variables X1, . . . , XN . By ran-

dom variable, we mean a variable about whose value the

subject may entertain certain beliefs. We assume that at

each successive instant k, the actual value of the random

variables Xk can be determined in principle. To fix ideas,

our subject might be drawing balls without replacement

from an urn, in which case Xk could designate the colour

of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our

subject in some way uses zero or more observations

X1, . . . , Xn made previously, i.e., those up to a certain in-

stant n ∈ {0,1, . . . ,N −1}, to predict, or make inferences

about, the values of the future, or as yet unmade, observa-

tions Xn+1, . . . , XN . Here, we only consider the problem of

immediate prediction: he is only trying to predict, or make

inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,

before making any observation, our subject knows very

little or nothing about what produces these observations. In

the urn example, this is the situation where he doesn’t know

the composition of the urn, e.g., how many balls there are,

or what their colours are. What we do assume, however, is

that our subject makes an assessment of exchangeability to

the effect that the order in which a sequence of observations

has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-

termine, beforehand, a (finite and non-empty) set X of

possible values, also called categories, for the random vari-

ables Xk. It is then sometimes held, especially by advo-

cates of a logical interpretation for probability, that our

subject’s beliefs should be represented by some given fam-

ily of predictive probability mass functions. Such a pre-

dictive family is made up of real-valued maps pn+1
X

(⋅∣x)
on X , which give, for each n = 0, . . . ,N − 1 and each

x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-

bility mass function for the (n+1)-th observation, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-

ous observations. Any such family should in particular

reflect the above-mentioned exchangeability assessment.

Cases in point are the Laplace–Bayes Rule of Succession

in the case of two categories [10], or Carnap’s more general

λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-

ample, can strongly depend on the number of elements in

the set X . This may well be considered undesirable. If for

instance, we consider drawing balls from an urn, predictive

inferences about whether the next ball will be ‘red or green’

ideally should not depend on whether we assume before-

hand that the possible categories are ‘red’, ‘green’, ‘blue’

and ‘any other colour’, or whether we take them to be ‘red

or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This

desirable property was called representation invariance by

Peter Walley [14], who argued that it cannot be satisfied

by a precise probability model, i.e., by a system consist-

ing of a family of predictive probability mass functions

pn+1
X

(⋅∣x) for every X , but that it is satisfied by the so-
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1 The setting

Sampling: A subject makes a fixed number N > 0 of

successive observations, represented by random variables

X1, . . . ,XN. For example, when drawing coloured balls without

replacement from an urn, Xk designates the unknown colour

of the k-th ball.

Immediate prediction: The subject in some way uses zero

or more observations X1, . . . ,Xn made previously (so n be-

longs to {0,1, . . . ,N − 1}), to predict, or make inferences

about, the value of the next observation Xn+1.

Families of predictive lower previsions: The subject can

determine, beforehand, a finite and non-empty set X of pos-

sible values, or categories, for the random variables.

For each n and each sequence xxx = (x1, . . . ,xn) in X n, she

can give a predictive lower prevision Pn+1
X

(⋅∣xxx) for Xn+1, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = xxx of the previous ob-

servations. It is defined on the set of all gambles f on X .

X = {a,b,c}

N = 3

n = 2

xxx = (c,a)

Let f (a) = 1, f (b) = 3, f (c) =−2,

then, e.g., P3
X
( f ∣c,a) =−1

2
.

Let A = {a,c},

then, e.g., P3
X
(A∣c,a) = 4

5
.

An X -family σ N
X

of predictive lower previsions is the set

formed for all possible observations:

σ N
X

:=
{

Pn+1
X

(⋅∣xxx) : xxx ∈ X
n and n = 0,1, . . . ,N −1

}

.

P1
X

P2
X
(⋅∣a)

P3
X
(⋅∣a,a)

P3
X
(⋅∣a,b)

P3
X
(⋅∣a,c)

P2
X
(⋅∣b)

P3
X
(⋅∣b,a)

P3
X
(⋅∣b,b)

P3
X
(⋅∣b,c)

P2
X
(⋅∣c)

P3
X
(⋅∣c,a)

P3
X
(⋅∣c,b)

P3
X
(⋅∣c,c)

X = {a,b,c}

N = 3

Precise predictive families are those that only contain pre-

dictive linear previsions Pn+1
X

(⋅∣xxx). With each of these, there

corresponds a predictive probability mass function. They in

turn allow us, using Bayes’s rule, to find the unique joint prob-

ability mass functions pn
X

on X n and the corresponding joint

linear prevision PN
X

, which models beliefs about the values

that the random variables (X1, . . . ,XN) assume jointly in X N.
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Systems of predictive lower previsions: The inferences

or predictions of a predictive X -family might depend on the

actual choice of X made. So we let our subject consider

predictive families for all conceivable choices of X . We collect

these families in a system σ N of predictive lower previsions:

σ N :=
{

σ N
X : X is a finite and non-empty set

}

.

N = 3

P1
X

P2
X
(⋅∣a)

P2
X
(⋅∣b)

P2
X
(⋅∣c)

X = {a,b,c}

P1
Y

P2
Y
(⋅∣⊥)

P3
Y
(⋅∣⊥,⊥)

P3
Y
(⋅∣⊥,⊤)

P2
X
(⋅∣⊤)

P3
Y
(⋅∣⊤,⊥)

P3
Y
(⋅∣⊤,⊤)

Y = {⊥,⊤}

...

P1
Z

P2
Z
(⋅∣★) P3

Z
(⋅∣★,★)

Z = {★}

Precise predictive systems are those that only contain pre-

cise predictive families.

Predictive systems can be partially ordered : The system σ N

is more conservative than the system λ N, if each predictive

lower prevision Pn+1
X

(⋅∣xxx) in σ N is point-wise dominated by

the corresponding predictive lower prevision Qn+1

X
(⋅∣xxx) in λ N.

ν3

σ 3
ε

π3

λ 3

σ 3

the ordering
discussed

above an ordering
of systems

encountered later

A collection
{

σ N
γ : γ ∈ Γ

}

of predictive systems may have

an infimum with respect to this partial order. Whenever it ex-

ists, this infimum system σ N can be seen as a lower envelope:

each of its predictive lower previsions Pn+1
X

(⋅∣xxx) is defined

as the lower envelope infγ∈Γ Pn+1
X ,γ(⋅∣xxx) of the predictive lower

previsions in the predictive systems σ N
γ .
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2 Requirements & Assumptions

Coherence: Coherence is a requirement on the individual

predictive lower previsions.

A predictive system is called coherent if it is the lower

envelope of a collection of precise predictive systems. This is

equivalent to requiring that all the predictive lower previsions

Pn+1
X

(⋅∣xxx) in the system should be separately coherent.

(Regular) exchangeability: Exchangeability is an assump-

tion about a family of predictive lower previsions.

A precise predictive system is exchangeable if all the asso-

ciated joint linear previsions PN
X

are exchangeable, i.e., invari-

ant under permutation of the random variables X1, . . . ,XN.

A general predictive system is called exchangeable if it is

the lower envelope of a collection
{

σ N
γ : γ ∈ Γ

}

of exchange-

able precise predictive systems. It is regularly exchangeable

if all predictive linear previsions Pn+1
X ,γ(⋅∣xxx) in each of these

systems σ N
γ can be uniquely derived from the joint linear pre-

vision PN
X ,γ by applying Bayes’s rule. (For this, the joint mass

functions pn
X ,γ should be strictly positive for n < N.)

3 Some results

From sequences of observations to count vectors: In

any regularly exchangeable predictive system, the predictive

lower previsions Pn+1
X

(⋅∣xxx) only depend on the sequence of

observations xxx through its count vector mmm ∈ N n
X

, with

mz := ∣{k ∈ {1, . . . ,n} : xk = z}∣,

N
n

X
:=

{

mmm ∈ ℕ
X

0 : ∑z∈X mz = n
}

.

All predictive lower previsions for given sequences with the

same count vector mmm can therefore be written as Pn+1
X

(⋅∣mmm).

N = 3

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

P3
Y
(⋅∣1,1)

P2
X
(⋅∣0,1)

P3
Y
(⋅∣1,1)

P3
Y
(⋅∣0,2)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

...

So, for regularly exchangeable predictive systems, count

vectors are a sufficient statistic. From now on, we only con-

sider (possibly non-exchangeable) predictive systems for

which this is the case.

A useful (in)equality In any regularly exchangeable predic-

tive system, it holds for all gambles f that

Pn+1
X

( f ∣mmm)≥ Pn+1
X

(Pn+2
X

( f ∣mmm+ eee⋅)∣mmm),

where n ≤ N−2 and eeex ∈N 1
X

for x ∈X such that, using the

Kronecker delta, (eeex)z = δxz. For precise regularly exchange-

able predictive systems, this becomes a ‘useful equality’.

4 Some more requirements

Representation insensitivity: Representation insensitivity

is a requirement that works between predictive lower previ-

sions for the same number of observations.

It comprises three invariance requirements:

• pooling invariance: inferences that do not depend on the

distinction between some categories should stay the same

when those categories are pooled;

• renaming invariance: apart from avoiding confusion, the

names of the categories should not matter;

• category permutation invariance: in a state of prior igno-

rance, which we consider here, the subject has no reason

to distinguish between the categories, so the inferences

should be invariant under a permutation of them.

Combining these, we can say a predictive system is represen-

tation insensitive if for all n, for any category sets X and Y ,

for any mmm ∈ N n
X

and mmm′ ∈ N n
Y

, and for any gambles f on X

and g on Y with identical ranges, the following holds:

mmm f = mmm′g ⇒ Pn+1
X

( f ∣mmm) = Pn+1
Y

(g∣mmm′),

with m f
r := ∑ f (x)=r mx. This means Pn+1

X
( f ∣mmm) only depends

on the values that f may assume, and on the number of times

each value has been observed:

Pn+1
X

( f ∣mmm) = Pn+1

f (X )(id f (X ) ∣mmm
f ),

where id f (X ) is the identity map on the range of f .

N = 3

P1
X

P2
X
(⋅∣1,0,0)

P2
X
(⋅∣0,1,0)

P2
X
(⋅∣0,0,1)

P3
X
(⋅∣1,0,1)

X = {a,b,c}

mmm = (ma,mb,mc)

linked by cat-

egory permu-

tation (b ↔ c)

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

linked by pooling

and renaming

({a,c} 7→⊥, b 7→ ⊤)

linked by specificity and

renaming (A = {a,b},

a 7→ ⊥, b 7→ ⊤)

Specificity (optional): Specificity is a requirement that

works between predictive lower previsions for a different num-

ber of observations related by pooling.

An exchangeable predictive system is specific if for all gam-

bles f and all non-trivial events A in X containing a non-zero

number mA of observations, it holds that

Pn+1
X

( f ∣mmm,A) = P
mA+1

A ( fA∣mmmA),

where fA and mmmA are the restriction of f and mmm to A. So,

knowing that the (n+1)-th observation belongs to A allows

you to ignore all the previous observations that lie outside A.

5 More results

The lower probability function: With any predictive sys-

tem we associate a map ϕ defined for all n and k ≤ n by

ϕ(n,k) := Pn+1

{0,1}(id{0,1} ∣n− k,k).

For representation insensitive systems it fully characterizes

all predictive lower probabilities (cfr. Johnson’s sufficientness

postulate) and is therefore called the lower probability func-

tion; to wit, let A be some event, and mA the associated num-

ber of observations, then

Pn+1
X

(A∣mmm) = Pn+1

{0,1}(id{0,1} ∣n−mA,mA) = ϕ(n,mA).

It allows us to draw intuitively appealing conclusions, which

are valid in any coherent representation insensitive system:

(i) the lower/upper probability of observing an event that has

not/always been observed before is zero/one;

(ii) if n remains fixed, then both the lower and upper probabil-

ity of observing A again do not decrease if mA increases;

(iii) in systems that are also regularly exchangeable: if mA re-

mains the same as n increases, then the lower probability

for observing A again does not increase.

Some representation insensitive exchangeable systems:

To start: all the P1
X

in a representation insensitive and ex-

changeable predictive system must be vacuous.

A subject that is too conservative to learn uses the regularly

exchangeable vacuous predictive system νN. All its predictive

lower previsions are vacuous, so Pn+1
X

( f ∣mmm) := min f .

A subject that believes that categories unobserved in the

past remain so in the future, uses the (not regularly) exchange-

able Haldane predictive system πN. For n> 0, all its predictive

previsions are linear and strongly tied to the observations:

Pn+1
X

( f ∣mmm) = Sn+1
X

( f ∣mmm) := ∑z∈X f (z)mz

n
.

Other systems can be formed as convex mixtures of the two

extreme ones above. We define mixing predictive systems σ N
ε

with a [0,1]-bounded mixing sequence ε of length N and

Pn+1
X

( f ∣mmm) := εnSn+1
X

( f ∣mmm)+(1− εn)min f ;

note that implicitly ε0 = 0. Representation insensitivity is re-

tained after mixing; a sufficient condition for regular exchange-

ability is the reformulated ‘useful inequality’ εn

n
≥

εn+1

n+1

(

1+ εn

n

)

.

The lower probability function of a mixing system is given

by ϕ(n,k) = εn
k
n
. So, as εn = nϕ(n,1), a mixing system can

be defined by specifying the lower probability of observing any

non-trivial event that has been observed once in n trials; it is

the most conservative system with these lower probabilities.

The imprecise Dirichlet-Multinomial model: Any mixing

system that is specific or for which the ‘useful equality’ holds,

is uniquely characterized by some s > 0 such that εn =
n

n+s

and thus
Pn+1

X
( f ∣mmm) = n

n+s
Sn+1

X
( f ∣mmm)+ s

n+s
min f .

This regularly exchangeable representation insensitive predic-

tive system is related to the imprecise Dirichlet-Multinomial

model with hyper-parameter s.
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a b s t r a c t

We consider immediate predictive inference, where a subject, using a number of observa-

tions of a finite number of exchangeable random variables, is asked to coherently model his

beliefs about the next observation, in terms of a predictive lower prevision. We study when

such predictive lower previsions are representation insensitive, meaning that they are

essentially independent of the choice of the (finite) set of possible values for the random

variables. We establish that such representation insensitive predictive models have very

interesting properties, and show that among such models, the ones produced by the Impre-

cise Dirichlet-Multinomial Model are quite special in a number of ways. In the Conclusion,

we discuss the open question as to how unique the predictive lower previsions of the

Imprecise Dirichlet-Multinomial Model are in being representation insensitive.
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1. Introduction

Consider a subject who is making N > 0 successive observations of a certain phenomenon. We represent these observa-

tions by N random variables X1; . . . ;XN . By random variable, we mean a variable about whose value the subject may entertain

certain beliefs. We assume that at each successive instant k, the actual value of the random variables Xk can be determined in

principle. To fix ideas, our subject might be looking for frogs in the Amazon forest, and then Xk is the species of the kth frog he

comes across. Or, he might, as an archetypical example, be drawing balls without replacement from an urn, in which case Xk

could designate the color of the kth ball taken from the urn.
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We extend Finetti’s [Ann. Inst. H. Poincaré 7 (1937) 1–68] notion of exchangeability to finite and countable

sequences of variables, when a subject’s beliefs about them are modelled using coherent lower previsions

rather than (linear) previsions. We derive representation theorems in both the finite and countable cases, in

terms of sampling without and with replacement, respectively.

Keywords: Bernstein polynomials; coherence; convergence in distribution; exchangeability; imprecise

probability; lower prevision; multinomial sampling; representation theorem; sampling without replacement

1. Introduction

This paper deals with belief models for both finite and countable sequences of exchangeable

random variables taking a finite number of values. When such sequences of random variables are

assumed to be exchangeable, this more-or-less means that the specific order in which they are

observed is deemed irrelevant.

The first detailed study of exchangeability was made by Finetti [5] (with the terminology of

‘equivalent’ events). Therein was proven the now famous representation theorem, which is often

interpreted as stating that a sequence of random variables is exchangeable if it is conditionally

independent and identically distributed (i.i.d.). Other important work on exchangeability was

done by, amongst many others, Hewitt and Savage [12], Heath and Sudderth [10], Diaconis and

Freedman [8] and, in the context of the behavioural theory of imprecise probabilities that we are

going to consider here, by Walley [19]. We refer to Kallenberg [14,15] for modern, measure-

theoretic discussions of exchangeability.

One of the reasons why exchangeability is deemed important, especially by Bayesians, is

that, by virtue of de Finetti’s representation theorem, an exchangeable model can be seen as a

convex mixture of multinomial models. This has given lent some support [2,5,7] to the claim

that aleatory probabilities and i.i.d. processes can be eliminated from statistics and that we can

restrict ourselves to exchangeable sequences instead; see Walley [19], Section 9.5.6 for a critical

discussion of this claim.

De Finetti presented his study of exchangeability in terms of the behavioural notion of previ-

sions, or fair prices. The central assumption underlying his approach is that a subject should be

able to specify a fair price P(f ) for any risky transaction (which we will call a gamble) f ([7],

Chapter 3). This may not always be realistic, so it has been suggested that we should explicitly

allow for a subject’s indecision, by distinguishing between his lower prevision P (f ), which is
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EXCHANGEABLE LOWER PREVISIONS

GERT DE COOMAN, ERIK QUAEGHEBEUR, AND ENRIQUE MIRANDA

ABSTRACT. We extend de Finetti’s (1937) notion of exchangeability tofinite and count-
able sequences of variables, when a subject’s beliefs aboutthem are modelled using coher-
ent lower previsions rather than (linear) previsions. We prove representation theorems in
both the finite and the countable case, in terms of sampling without and with replacement,
respectively. We also establish a convergence result for sample means of exchangeable
sequences. Finally, we study and solve the problem of exchangeable natural extension:
how to find the most conservative (point-wise smallest) coherent and exchangeable lower
prevision that dominates a given lower prevision.

1. INTRODUCTION

This paper deals with belief models for both finite and countable sequences of exchange-
able random variables taking a finite number of values. When such sequences of random
variables are assumed to be exchangeable, this more or less means that the specific order
in which they are observed is deemed irrelevant.

The first detailed study of exchangeability was made by de Finetti (1937) (with the ter-
minology of ‘equivalent’ events). He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchange-
able if it is conditionally independent and identically distributed (IID).1 Other important
work on exchangeability was done by, amongst many others, Hewitt and Savage (1955),
Heath and Sudderth (1976), Diaconis and Freedman (1980) and, in the context of the be-
havioural theory of imprecise probabilities that we are going to consider here, by Walley
(1991). We refer to Kallenberg (2002, 2005) for modern, measure-theoretic discussions of
exchangeability.

One of the reasons why exchangeability is deemed important,especially by Bayesians,
is that, by virtue of de Finetti’s Representation Theorem, an exchangeable model can be
seen as a convex mixture of multinomial models. This has given some ground (de Finetti,
1937, 1975; Dawid, 1985) to the claim that aleatory probabilities and IID processes can be
eliminated from statistics, and that we can restrict ourselves to considering exchangeable
sequences instead.2

De Finetti presented his study of exchangeability in terms of the behavioural notion
of previsions, or fair prices. The central assumption underlying his approach is that a
subject should be able to specify a fair priceP( f ) for any risky transaction (which we
shall call agamble) f (de Finetti, 1974, Chapter 3). This is tantamount to requiring that
he should always be willing and able to decide, for any real numberr, between selling the
gamble f for r, or buying it for that price. This may not always be realistic, and for this

Key words and phrases. Exchangeability, lower prevision, Representation Theorem, Bernstein polynomials,
convergence in distribution, exchangeable natural extension, sampling without replacement, multinomial sam-
pling, imprecise probability, coherence.

1See de Finetti (1975, Section 11.4); and Cifarelli and Regazzini (1996) for an overview of de Finetti’s work.
2For a critical discussion of this claim, see Walley (1991, Section 9.5.6).
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abstract. A model for a subject’s
beliefs

about a phenomenon

may exhibit symmetry, in the sense that it is invaria
nt under cer-

tain
transform

ation
s. On the other hand, such a belief

model may be

intended to represen
t that the subject believ

es or knows that the phe-

nomenon under study exhibits symmetry. We defend the view that

these are fundamentally
different things, even

though the difference

cannot be captured by Bayesi
an belief

models. In fact,
the failu

re to

distin
guish between both situation

s leads to Laplace’
s so-ca

lled Prin-

ciple of Insufficient Reason
, which has been critic

ised
extensivel

y in

the litera
ture.

We show that there are belief
models (imprecis

e probability
mod-

els, coherent lower prevision
s) that generali

se and include the more

tradition
al Bayesi

an belief
models, but where this fundamental differ-

ence can be captured. This leads to two notion
s of symmetry

for such

belief
models: weak invaria

nce (represen
ting symmetry

of beliefs
) and

stron
g invaria

nce (modelling beliefs
of symmetry). We discuss vario

us

mathematica
l as well as more philoso

phical aspects
of these notion

s.

We also
discuss a few examples to show the relev

ance of our findings

both to probabilisti
c modelling and to stati

stica
l inferen

ce, and to the

notion
of exchangeab

ility
in partic

ular.

1 Introductio
n

This paper deals
with symmetry

in relat
ion to models of beliefs

. Consider

a model for a subject’
s beliefs

about a certa
in phenomenon. Such a belie

f

model
may be symmetric

al , in the sense that it is invaria
nt under certa

in

tran
sform

ation
s. On the other hand, a belief

model may try to capture that

the subject
believ

es that the phenomenon under study exhibits symmetry,

and we then say
that the belief

model models
symmetry

. We defend the

view that there is an importa
nt conceptual differen

ce between the two case
s:

symmetry
of beliefs

should not be confused with beliefs
of symmetry.

1

1This echoes Walley
’s [1991

, Sectio
n 9.5.6

, p. 466]
view that ‘symmetry

of evidence’

is not the same thing as ‘evidence of symmetry’.

Leren uit monsters met coherente onderprevisies

Learning from Samples Using Coherent Lower Previsions

Erik Quaeghebeur

Promotoren: prof. dr. ir. G. de Cooman, prof. dr. ir. D. Aeyels

Proefschrift ingediend tot het behalen van de graad van 

Doctor in de Ingenieurswetenschappen: Wiskundige Ingenieurstechnieken

Vakgroep Elektrische Energie, Systemen en Automatisering

Voorzitter: prof. dr. ir. J. Melkebeek

Faculteit Ingenieurswetenschappen

Academiejaar 2008 - 2009  



5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

Immediate prediction

under exchangeability and representation insensitivity

Gert de Cooman

Ghent University

SYSTeMS Research Group

gert.decooman@ugent.be

Enrique Miranda

Rey Juan Carlos University

Dept. of Statistics and O.R.

enrique.miranda@urjc.es

Erik Quaeghebeur

Ghent University

SYSTeMS Research Group

erik.quaeghebeur@ugent.be

Abstract

We consider immediate predictive inference, where a sub-

ject, using a number of observations of a finite number

of exchangeable random variables, is asked to coherently

model his beliefs about the next observation, in terms of

a predictive lower prevision. We study when such predic-

tive lower previsions are representation insensitive, mean-

ing that they are essentially independent of the choice of

the (finite) set of possible values for the random variables.

Such representation insensitive predictive models have very

interesting properties, and among such models, the ones

produced by the Imprecise Dirichlet-Multinomial Model

are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,

lower prevision, coherence, exchangeability, representation

invariance, representation insensitivity, Imprecise Dirichlet-

Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-

servations of a certain phenomenon. We represent these

observations by N random variables X1, . . . , XN . By ran-

dom variable, we mean a variable about whose value the

subject may entertain certain beliefs. We assume that at

each successive instant k, the actual value of the random

variables Xk can be determined in principle. To fix ideas,

our subject might be drawing balls without replacement

from an urn, in which case Xk could designate the colour

of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our

subject in some way uses zero or more observations

X1, . . . , Xn made previously, i.e., those up to a certain in-

stant n ∈ {0,1, . . . ,N −1}, to predict, or make inferences

about, the values of the future, or as yet unmade, observa-

tions Xn+1, . . . , XN . Here, we only consider the problem of

immediate prediction: he is only trying to predict, or make

inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,

before making any observation, our subject knows very

little or nothing about what produces these observations. In

the urn example, this is the situation where he doesn’t know

the composition of the urn, e.g., how many balls there are,

or what their colours are. What we do assume, however, is

that our subject makes an assessment of exchangeability to

the effect that the order in which a sequence of observations

has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-

termine, beforehand, a (finite and non-empty) set X of

possible values, also called categories, for the random vari-

ables Xk. It is then sometimes held, especially by advo-

cates of a logical interpretation for probability, that our

subject’s beliefs should be represented by some given fam-

ily of predictive probability mass functions. Such a pre-

dictive family is made up of real-valued maps pn+1
X

(⋅∣x)
on X , which give, for each n = 0, . . . ,N − 1 and each

x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-

bility mass function for the (n+1)-th observation, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-

ous observations. Any such family should in particular

reflect the above-mentioned exchangeability assessment.

Cases in point are the Laplace–Bayes Rule of Succession

in the case of two categories [10], or Carnap’s more general

λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-

ample, can strongly depend on the number of elements in

the set X . This may well be considered undesirable. If for

instance, we consider drawing balls from an urn, predictive

inferences about whether the next ball will be ‘red or green’

ideally should not depend on whether we assume before-

hand that the possible categories are ‘red’, ‘green’, ‘blue’

and ‘any other colour’, or whether we take them to be ‘red

or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This

desirable property was called representation invariance by

Peter Walley [14], who argued that it cannot be satisfied

by a precise probability model, i.e., by a system consist-

ing of a family of predictive probability mass functions

pn+1
X

(⋅∣x) for every X , but that it is satisfied by the so-
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1 The setting

Sampling: A subject makes a fixed number N > 0 of

successive observations, represented by random variables

X1, . . . ,XN. For example, when drawing coloured balls without

replacement from an urn, Xk designates the unknown colour

of the k-th ball.

Immediate prediction: The subject in some way uses zero

or more observations X1, . . . ,Xn made previously (so n be-

longs to {0,1, . . . ,N − 1}), to predict, or make inferences

about, the value of the next observation Xn+1.

Families of predictive lower previsions: The subject can

determine, beforehand, a finite and non-empty set X of pos-

sible values, or categories, for the random variables.

For each n and each sequence xxx = (x1, . . . ,xn) in X n, she

can give a predictive lower prevision Pn+1
X

(⋅∣xxx) for Xn+1, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = xxx of the previous ob-

servations. It is defined on the set of all gambles f on X .

X = {a,b,c}

N = 3

n = 2

xxx = (c,a)

Let f (a) = 1, f (b) = 3, f (c) =−2,

then, e.g., P3
X
( f ∣c,a) =−1

2
.

Let A = {a,c},

then, e.g., P3
X
(A∣c,a) = 4

5
.

An X -family σ N
X

of predictive lower previsions is the set

formed for all possible observations:

σ N
X

:=
{

Pn+1
X

(⋅∣xxx) : xxx ∈ X
n and n = 0,1, . . . ,N −1

}

.

P1
X

P2
X
(⋅∣a)

P3
X
(⋅∣a,a)

P3
X
(⋅∣a,b)

P3
X
(⋅∣a,c)

P2
X
(⋅∣b)

P3
X
(⋅∣b,a)

P3
X
(⋅∣b,b)

P3
X
(⋅∣b,c)

P2
X
(⋅∣c)

P3
X
(⋅∣c,a)

P3
X
(⋅∣c,b)

P3
X
(⋅∣c,c)

X = {a,b,c}

N = 3

Precise predictive families are those that only contain pre-

dictive linear previsions Pn+1
X

(⋅∣xxx). With each of these, there

corresponds a predictive probability mass function. They in

turn allow us, using Bayes’s rule, to find the unique joint prob-

ability mass functions pn
X

on X n and the corresponding joint

linear prevision PN
X

, which models beliefs about the values

that the random variables (X1, . . . ,XN) assume jointly in X N.
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Systems of predictive lower previsions: The inferences

or predictions of a predictive X -family might depend on the

actual choice of X made. So we let our subject consider

predictive families for all conceivable choices of X . We collect

these families in a system σ N of predictive lower previsions:

σ N :=
{

σ N
X : X is a finite and non-empty set

}

.

N = 3

P1
X

P2
X
(⋅∣a)

P2
X
(⋅∣b)

P2
X
(⋅∣c)

X = {a,b,c}

P1
Y

P2
Y
(⋅∣⊥)

P3
Y
(⋅∣⊥,⊥)

P3
Y
(⋅∣⊥,⊤)

P2
X
(⋅∣⊤)

P3
Y
(⋅∣⊤,⊥)

P3
Y
(⋅∣⊤,⊤)

Y = {⊥,⊤}

...

P1
Z

P2
Z
(⋅∣★) P3

Z
(⋅∣★,★)

Z = {★}

Precise predictive systems are those that only contain pre-

cise predictive families.

Predictive systems can be partially ordered : The system σ N

is more conservative than the system λ N, if each predictive

lower prevision Pn+1
X

(⋅∣xxx) in σ N is point-wise dominated by

the corresponding predictive lower prevision Qn+1

X
(⋅∣xxx) in λ N.

ν3

σ 3
ε

π3

λ 3

σ 3

the ordering
discussed

above an ordering
of systems

encountered later

A collection
{

σ N
γ : γ ∈ Γ

}

of predictive systems may have

an infimum with respect to this partial order. Whenever it ex-

ists, this infimum system σ N can be seen as a lower envelope:

each of its predictive lower previsions Pn+1
X

(⋅∣xxx) is defined

as the lower envelope infγ∈Γ Pn+1
X ,γ(⋅∣xxx) of the predictive lower

previsions in the predictive systems σ N
γ .
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2 Requirements & Assumptions

Coherence: Coherence is a requirement on the individual

predictive lower previsions.

A predictive system is called coherent if it is the lower

envelope of a collection of precise predictive systems. This is

equivalent to requiring that all the predictive lower previsions

Pn+1
X

(⋅∣xxx) in the system should be separately coherent.

(Regular) exchangeability: Exchangeability is an assump-

tion about a family of predictive lower previsions.

A precise predictive system is exchangeable if all the asso-

ciated joint linear previsions PN
X

are exchangeable, i.e., invari-

ant under permutation of the random variables X1, . . . ,XN.

A general predictive system is called exchangeable if it is

the lower envelope of a collection
{

σ N
γ : γ ∈ Γ

}

of exchange-

able precise predictive systems. It is regularly exchangeable

if all predictive linear previsions Pn+1
X ,γ(⋅∣xxx) in each of these

systems σ N
γ can be uniquely derived from the joint linear pre-

vision PN
X ,γ by applying Bayes’s rule. (For this, the joint mass

functions pn
X ,γ should be strictly positive for n < N.)

3 Some results

From sequences of observations to count vectors: In

any regularly exchangeable predictive system, the predictive

lower previsions Pn+1
X

(⋅∣xxx) only depend on the sequence of

observations xxx through its count vector mmm ∈ N n
X

, with

mz := ∣{k ∈ {1, . . . ,n} : xk = z}∣,

N
n

X
:=

{

mmm ∈ ℕ
X

0 : ∑z∈X mz = n
}

.

All predictive lower previsions for given sequences with the

same count vector mmm can therefore be written as Pn+1
X

(⋅∣mmm).

N = 3

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

P3
Y
(⋅∣1,1)

P2
X
(⋅∣0,1)

P3
Y
(⋅∣1,1)

P3
Y
(⋅∣0,2)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

...

So, for regularly exchangeable predictive systems, count

vectors are a sufficient statistic. From now on, we only con-

sider (possibly non-exchangeable) predictive systems for

which this is the case.

A useful (in)equality In any regularly exchangeable predic-

tive system, it holds for all gambles f that

Pn+1
X

( f ∣mmm)≥ Pn+1
X

(Pn+2
X

( f ∣mmm+ eee⋅)∣mmm),

where n ≤ N−2 and eeex ∈N 1
X

for x ∈X such that, using the

Kronecker delta, (eeex)z = δxz. For precise regularly exchange-

able predictive systems, this becomes a ‘useful equality’.

4 Some more requirements

Representation insensitivity: Representation insensitivity

is a requirement that works between predictive lower previ-

sions for the same number of observations.

It comprises three invariance requirements:

• pooling invariance: inferences that do not depend on the

distinction between some categories should stay the same

when those categories are pooled;

• renaming invariance: apart from avoiding confusion, the

names of the categories should not matter;

• category permutation invariance: in a state of prior igno-

rance, which we consider here, the subject has no reason

to distinguish between the categories, so the inferences

should be invariant under a permutation of them.

Combining these, we can say a predictive system is represen-

tation insensitive if for all n, for any category sets X and Y ,

for any mmm ∈ N n
X

and mmm′ ∈ N n
Y

, and for any gambles f on X

and g on Y with identical ranges, the following holds:

mmm f = mmm′g ⇒ Pn+1
X

( f ∣mmm) = Pn+1
Y

(g∣mmm′),

with m f
r := ∑ f (x)=r mx. This means Pn+1

X
( f ∣mmm) only depends

on the values that f may assume, and on the number of times

each value has been observed:

Pn+1
X

( f ∣mmm) = Pn+1

f (X )(id f (X ) ∣mmm
f ),

where id f (X ) is the identity map on the range of f .

N = 3

P1
X

P2
X
(⋅∣1,0,0)

P2
X
(⋅∣0,1,0)

P2
X
(⋅∣0,0,1)

P3
X
(⋅∣1,0,1)

X = {a,b,c}

mmm = (ma,mb,mc)

linked by cat-

egory permu-

tation (b ↔ c)

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

linked by pooling

and renaming

({a,c} 7→⊥, b 7→ ⊤)

linked by specificity and

renaming (A = {a,b},

a 7→ ⊥, b 7→ ⊤)

Specificity (optional): Specificity is a requirement that

works between predictive lower previsions for a different num-

ber of observations related by pooling.

An exchangeable predictive system is specific if for all gam-

bles f and all non-trivial events A in X containing a non-zero

number mA of observations, it holds that

Pn+1
X

( f ∣mmm,A) = P
mA+1

A ( fA∣mmmA),

where fA and mmmA are the restriction of f and mmm to A. So,

knowing that the (n+1)-th observation belongs to A allows

you to ignore all the previous observations that lie outside A.

5 More results

The lower probability function: With any predictive sys-

tem we associate a map ϕ defined for all n and k ≤ n by

ϕ(n,k) := Pn+1

{0,1}(id{0,1} ∣n− k,k).

For representation insensitive systems it fully characterizes

all predictive lower probabilities (cfr. Johnson’s sufficientness

postulate) and is therefore called the lower probability func-

tion; to wit, let A be some event, and mA the associated num-

ber of observations, then

Pn+1
X

(A∣mmm) = Pn+1

{0,1}(id{0,1} ∣n−mA,mA) = ϕ(n,mA).

It allows us to draw intuitively appealing conclusions, which

are valid in any coherent representation insensitive system:

(i) the lower/upper probability of observing an event that has

not/always been observed before is zero/one;

(ii) if n remains fixed, then both the lower and upper probabil-

ity of observing A again do not decrease if mA increases;

(iii) in systems that are also regularly exchangeable: if mA re-

mains the same as n increases, then the lower probability

for observing A again does not increase.

Some representation insensitive exchangeable systems:

To start: all the P1
X

in a representation insensitive and ex-

changeable predictive system must be vacuous.

A subject that is too conservative to learn uses the regularly

exchangeable vacuous predictive system νN. All its predictive

lower previsions are vacuous, so Pn+1
X

( f ∣mmm) := min f .

A subject that believes that categories unobserved in the

past remain so in the future, uses the (not regularly) exchange-

able Haldane predictive system πN. For n> 0, all its predictive

previsions are linear and strongly tied to the observations:

Pn+1
X

( f ∣mmm) = Sn+1
X

( f ∣mmm) := ∑z∈X f (z)mz

n
.

Other systems can be formed as convex mixtures of the two

extreme ones above. We define mixing predictive systems σ N
ε

with a [0,1]-bounded mixing sequence ε of length N and

Pn+1
X

( f ∣mmm) := εnSn+1
X

( f ∣mmm)+(1− εn)min f ;

note that implicitly ε0 = 0. Representation insensitivity is re-

tained after mixing; a sufficient condition for regular exchange-

ability is the reformulated ‘useful inequality’ εn

n
≥

εn+1

n+1

(

1+ εn

n

)

.

The lower probability function of a mixing system is given

by ϕ(n,k) = εn
k
n
. So, as εn = nϕ(n,1), a mixing system can

be defined by specifying the lower probability of observing any

non-trivial event that has been observed once in n trials; it is

the most conservative system with these lower probabilities.

The imprecise Dirichlet-Multinomial model: Any mixing

system that is specific or for which the ‘useful equality’ holds,

is uniquely characterized by some s > 0 such that εn =
n

n+s

and thus
Pn+1

X
( f ∣mmm) = n

n+s
Sn+1

X
( f ∣mmm)+ s

n+s
min f .

This regularly exchangeable representation insensitive predic-

tive system is related to the imprecise Dirichlet-Multinomial

model with hyper-parameter s.
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a b s t r a c t

We consider immediate predictive inference, where a subject, using a number of observa-

tions of a finite number of exchangeable random variables, is asked to coherently model his

beliefs about the next observation, in terms of a predictive lower prevision. We study when

such predictive lower previsions are representation insensitive, meaning that they are

essentially independent of the choice of the (finite) set of possible values for the random

variables. We establish that such representation insensitive predictive models have very

interesting properties, and show that among such models, the ones produced by the Impre-

cise Dirichlet-Multinomial Model are quite special in a number of ways. In the Conclusion,

we discuss the open question as to how unique the predictive lower previsions of the

Imprecise Dirichlet-Multinomial Model are in being representation insensitive.
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1. Introduction

Consider a subject who is making N > 0 successive observations of a certain phenomenon. We represent these observa-

tions by N random variables X1; . . . ;XN . By random variable, we mean a variable about whose value the subject may entertain

certain beliefs. We assume that at each successive instant k, the actual value of the random variables Xk can be determined in

principle. To fix ideas, our subject might be looking for frogs in the Amazon forest, and then Xk is the species of the kth frog he

comes across. Or, he might, as an archetypical example, be drawing balls without replacement from an urn, in which case Xk

could designate the color of the kth ball taken from the urn.
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Exchangeable lower previsions
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We extend Finetti’s [Ann. Inst. H. Poincaré 7 (1937) 1–68] notion of exchangeability to finite and countable

sequences of variables, when a subject’s beliefs about them are modelled using coherent lower previsions

rather than (linear) previsions. We derive representation theorems in both the finite and countable cases, in

terms of sampling without and with replacement, respectively.

Keywords: Bernstein polynomials; coherence; convergence in distribution; exchangeability; imprecise

probability; lower prevision; multinomial sampling; representation theorem; sampling without replacement

1. Introduction

This paper deals with belief models for both finite and countable sequences of exchangeable

random variables taking a finite number of values. When such sequences of random variables are

assumed to be exchangeable, this more-or-less means that the specific order in which they are

observed is deemed irrelevant.

The first detailed study of exchangeability was made by Finetti [5] (with the terminology of

‘equivalent’ events). Therein was proven the now famous representation theorem, which is often

interpreted as stating that a sequence of random variables is exchangeable if it is conditionally

independent and identically distributed (i.i.d.). Other important work on exchangeability was

done by, amongst many others, Hewitt and Savage [12], Heath and Sudderth [10], Diaconis and

Freedman [8] and, in the context of the behavioural theory of imprecise probabilities that we are

going to consider here, by Walley [19]. We refer to Kallenberg [14,15] for modern, measure-

theoretic discussions of exchangeability.

One of the reasons why exchangeability is deemed important, especially by Bayesians, is

that, by virtue of de Finetti’s representation theorem, an exchangeable model can be seen as a

convex mixture of multinomial models. This has given lent some support [2,5,7] to the claim

that aleatory probabilities and i.i.d. processes can be eliminated from statistics and that we can

restrict ourselves to exchangeable sequences instead; see Walley [19], Section 9.5.6 for a critical

discussion of this claim.

De Finetti presented his study of exchangeability in terms of the behavioural notion of previ-

sions, or fair prices. The central assumption underlying his approach is that a subject should be

able to specify a fair price P(f ) for any risky transaction (which we will call a gamble) f ([7],

Chapter 3). This may not always be realistic, so it has been suggested that we should explicitly

allow for a subject’s indecision, by distinguishing between his lower prevision P (f ), which is
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EXCHANGEABLE LOWER PREVISIONS

GERT DE COOMAN, ERIK QUAEGHEBEUR, AND ENRIQUE MIRANDA

ABSTRACT. We extend de Finetti’s (1937) notion of exchangeability tofinite and count-
able sequences of variables, when a subject’s beliefs aboutthem are modelled using coher-
ent lower previsions rather than (linear) previsions. We prove representation theorems in
both the finite and the countable case, in terms of sampling without and with replacement,
respectively. We also establish a convergence result for sample means of exchangeable
sequences. Finally, we study and solve the problem of exchangeable natural extension:
how to find the most conservative (point-wise smallest) coherent and exchangeable lower
prevision that dominates a given lower prevision.

1. INTRODUCTION

This paper deals with belief models for both finite and countable sequences of exchange-
able random variables taking a finite number of values. When such sequences of random
variables are assumed to be exchangeable, this more or less means that the specific order
in which they are observed is deemed irrelevant.

The first detailed study of exchangeability was made by de Finetti (1937) (with the ter-
minology of ‘equivalent’ events). He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchange-
able if it is conditionally independent and identically distributed (IID).1 Other important
work on exchangeability was done by, amongst many others, Hewitt and Savage (1955),
Heath and Sudderth (1976), Diaconis and Freedman (1980) and, in the context of the be-
havioural theory of imprecise probabilities that we are going to consider here, by Walley
(1991). We refer to Kallenberg (2002, 2005) for modern, measure-theoretic discussions of
exchangeability.

One of the reasons why exchangeability is deemed important,especially by Bayesians,
is that, by virtue of de Finetti’s Representation Theorem, an exchangeable model can be
seen as a convex mixture of multinomial models. This has given some ground (de Finetti,
1937, 1975; Dawid, 1985) to the claim that aleatory probabilities and IID processes can be
eliminated from statistics, and that we can restrict ourselves to considering exchangeable
sequences instead.2

De Finetti presented his study of exchangeability in terms of the behavioural notion
of previsions, or fair prices. The central assumption underlying his approach is that a
subject should be able to specify a fair priceP( f ) for any risky transaction (which we
shall call agamble) f (de Finetti, 1974, Chapter 3). This is tantamount to requiring that
he should always be willing and able to decide, for any real numberr, between selling the
gamble f for r, or buying it for that price. This may not always be realistic, and for this

Key words and phrases. Exchangeability, lower prevision, Representation Theorem, Bernstein polynomials,
convergence in distribution, exchangeable natural extension, sampling without replacement, multinomial sam-
pling, imprecise probability, coherence.

1See de Finetti (1975, Section 11.4); and Cifarelli and Regazzini (1996) for an overview of de Finetti’s work.
2For a critical discussion of this claim, see Walley (1991, Section 9.5.6).

1

Exchangeable
lower previsions

I (in)finite sequences of
finite-valued random variables

I exchangeability assessment &
sequence order permutations

I sample sequences, count
vectors & frequency vectors

I representation theorems
I exchangeable natural extension

Symmetry
of models vers

us models of

symmetry

Gert
de Cooman and Enrique Miranda

abstract. A model for a subject’s
beliefs

about a phenomenon

may exhibit symmetry, in the sense that it is invaria
nt under cer-

tain
transform

ation
s. On the other hand, such a belief

model may be

intended to represen
t that the subject believ

es or knows that the phe-

nomenon under study exhibits symmetry. We defend the view that

these are fundamentally
different things, even

though the difference

cannot be captured by Bayesi
an belief

models. In fact,
the failu

re to

distin
guish between both situation

s leads to Laplace’
s so-ca

lled Prin-

ciple of Insufficient Reason
, which has been critic

ised
extensivel

y in

the litera
ture.

We show that there are belief
models (imprecis

e probability
mod-

els, coherent lower prevision
s) that generali

se and include the more

tradition
al Bayesi

an belief
models, but where this fundamental differ-

ence can be captured. This leads to two notion
s of symmetry

for such

belief
models: weak invaria

nce (represen
ting symmetry

of beliefs
) and

stron
g invaria

nce (modelling beliefs
of symmetry). We discuss vario

us

mathematica
l as well as more philoso

phical aspects
of these notion

s.

We also
discuss a few examples to show the relev

ance of our findings

both to probabilisti
c modelling and to stati

stica
l inferen

ce, and to the

notion
of exchangeab

ility
in partic

ular.

1 Introductio
n

This paper deals
with symmetry

in relat
ion to models of beliefs

. Consider

a model for a subject’
s beliefs

about a certa
in phenomenon. Such a belie

f

model
may be symmetric

al , in the sense that it is invaria
nt under certa

in

tran
sform

ation
s. On the other hand, a belief

model may try to capture that

the subject
believ

es that the phenomenon under study exhibits symmetry,

and we then say
that the belief

model models
symmetry

. We defend the

view that there is an importa
nt conceptual differen

ce between the two case
s:

symmetry
of beliefs

should not be confused with beliefs
of symmetry.

1

1This echoes Walley
’s [1991

, Sectio
n 9.5.6

, p. 466]
view that ‘symmetry

of evidence’

is not the same thing as ‘evidence of symmetry’.
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Abstract

We consider immediate predictive inference, where a sub-

ject, using a number of observations of a finite number

of exchangeable random variables, is asked to coherently

model his beliefs about the next observation, in terms of

a predictive lower prevision. We study when such predic-

tive lower previsions are representation insensitive, mean-

ing that they are essentially independent of the choice of

the (finite) set of possible values for the random variables.

Such representation insensitive predictive models have very

interesting properties, and among such models, the ones

produced by the Imprecise Dirichlet-Multinomial Model

are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,

lower prevision, coherence, exchangeability, representation

invariance, representation insensitivity, Imprecise Dirichlet-

Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-

servations of a certain phenomenon. We represent these

observations by N random variables X1, . . . , XN . By ran-

dom variable, we mean a variable about whose value the

subject may entertain certain beliefs. We assume that at

each successive instant k, the actual value of the random

variables Xk can be determined in principle. To fix ideas,

our subject might be drawing balls without replacement

from an urn, in which case Xk could designate the colour

of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our

subject in some way uses zero or more observations

X1, . . . , Xn made previously, i.e., those up to a certain in-

stant n ∈ {0,1, . . . ,N −1}, to predict, or make inferences

about, the values of the future, or as yet unmade, observa-

tions Xn+1, . . . , XN . Here, we only consider the problem of

immediate prediction: he is only trying to predict, or make

inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,

before making any observation, our subject knows very

little or nothing about what produces these observations. In

the urn example, this is the situation where he doesn’t know

the composition of the urn, e.g., how many balls there are,

or what their colours are. What we do assume, however, is

that our subject makes an assessment of exchangeability to

the effect that the order in which a sequence of observations

has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-

termine, beforehand, a (finite and non-empty) set X of

possible values, also called categories, for the random vari-

ables Xk. It is then sometimes held, especially by advo-

cates of a logical interpretation for probability, that our

subject’s beliefs should be represented by some given fam-

ily of predictive probability mass functions. Such a pre-

dictive family is made up of real-valued maps pn+1
X

(⋅∣x)
on X , which give, for each n = 0, . . . ,N − 1 and each

x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-

bility mass function for the (n+1)-th observation, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-

ous observations. Any such family should in particular

reflect the above-mentioned exchangeability assessment.

Cases in point are the Laplace–Bayes Rule of Succession

in the case of two categories [10], or Carnap’s more general

λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-

ample, can strongly depend on the number of elements in

the set X . This may well be considered undesirable. If for

instance, we consider drawing balls from an urn, predictive

inferences about whether the next ball will be ‘red or green’

ideally should not depend on whether we assume before-

hand that the possible categories are ‘red’, ‘green’, ‘blue’

and ‘any other colour’, or whether we take them to be ‘red

or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This

desirable property was called representation invariance by

Peter Walley [14], who argued that it cannot be satisfied

by a precise probability model, i.e., by a system consist-

ing of a family of predictive probability mass functions

pn+1
X

(⋅∣x) for every X , but that it is satisfied by the so-
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1 The setting

Sampling: A subject makes a fixed number N > 0 of

successive observations, represented by random variables

X1, . . . ,XN. For example, when drawing coloured balls without

replacement from an urn, Xk designates the unknown colour

of the k-th ball.

Immediate prediction: The subject in some way uses zero

or more observations X1, . . . ,Xn made previously (so n be-

longs to {0,1, . . . ,N − 1}), to predict, or make inferences

about, the value of the next observation Xn+1.

Families of predictive lower previsions: The subject can

determine, beforehand, a finite and non-empty set X of pos-

sible values, or categories, for the random variables.

For each n and each sequence xxx = (x1, . . . ,xn) in X n, she

can give a predictive lower prevision Pn+1
X

(⋅∣xxx) for Xn+1, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = xxx of the previous ob-

servations. It is defined on the set of all gambles f on X .

X = {a,b,c}

N = 3

n = 2

xxx = (c,a)

Let f (a) = 1, f (b) = 3, f (c) =−2,

then, e.g., P3
X
( f ∣c,a) =−1

2
.

Let A = {a,c},

then, e.g., P3
X
(A∣c,a) = 4

5
.

An X -family σ N
X

of predictive lower previsions is the set

formed for all possible observations:

σ N
X

:=
{

Pn+1
X

(⋅∣xxx) : xxx ∈ X
n and n = 0,1, . . . ,N −1

}

.

P1
X

P2
X
(⋅∣a)

P3
X
(⋅∣a,a)

P3
X
(⋅∣a,b)

P3
X
(⋅∣a,c)

P2
X
(⋅∣b)

P3
X
(⋅∣b,a)

P3
X
(⋅∣b,b)

P3
X
(⋅∣b,c)

P2
X
(⋅∣c)

P3
X
(⋅∣c,a)

P3
X
(⋅∣c,b)

P3
X
(⋅∣c,c)

X = {a,b,c}

N = 3

Precise predictive families are those that only contain pre-

dictive linear previsions Pn+1
X

(⋅∣xxx). With each of these, there

corresponds a predictive probability mass function. They in

turn allow us, using Bayes’s rule, to find the unique joint prob-

ability mass functions pn
X

on X n and the corresponding joint

linear prevision PN
X

, which models beliefs about the values

that the random variables (X1, . . . ,XN) assume jointly in X N.

Acknowledgements
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Systems of predictive lower previsions: The inferences

or predictions of a predictive X -family might depend on the

actual choice of X made. So we let our subject consider

predictive families for all conceivable choices of X . We collect

these families in a system σ N of predictive lower previsions:

σ N :=
{

σ N
X : X is a finite and non-empty set

}

.

N = 3

P1
X

P2
X
(⋅∣a)

P2
X
(⋅∣b)

P2
X
(⋅∣c)

X = {a,b,c}

P1
Y

P2
Y
(⋅∣⊥)

P3
Y
(⋅∣⊥,⊥)

P3
Y
(⋅∣⊥,⊤)

P2
X
(⋅∣⊤)

P3
Y
(⋅∣⊤,⊥)

P3
Y
(⋅∣⊤,⊤)

Y = {⊥,⊤}

...

P1
Z

P2
Z
(⋅∣★) P3

Z
(⋅∣★,★)

Z = {★}

Precise predictive systems are those that only contain pre-

cise predictive families.

Predictive systems can be partially ordered : The system σ N

is more conservative than the system λ N, if each predictive

lower prevision Pn+1
X

(⋅∣xxx) in σ N is point-wise dominated by

the corresponding predictive lower prevision Qn+1

X
(⋅∣xxx) in λ N.

ν3

σ 3
ε

π3

λ 3

σ 3

the ordering
discussed

above an ordering
of systems

encountered later

A collection
{

σ N
γ : γ ∈ Γ

}

of predictive systems may have

an infimum with respect to this partial order. Whenever it ex-

ists, this infimum system σ N can be seen as a lower envelope:

each of its predictive lower previsions Pn+1
X

(⋅∣xxx) is defined

as the lower envelope infγ∈Γ Pn+1
X ,γ(⋅∣xxx) of the predictive lower

previsions in the predictive systems σ N
γ .
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2 Requirements & Assumptions

Coherence: Coherence is a requirement on the individual

predictive lower previsions.

A predictive system is called coherent if it is the lower

envelope of a collection of precise predictive systems. This is

equivalent to requiring that all the predictive lower previsions

Pn+1
X

(⋅∣xxx) in the system should be separately coherent.

(Regular) exchangeability: Exchangeability is an assump-

tion about a family of predictive lower previsions.

A precise predictive system is exchangeable if all the asso-

ciated joint linear previsions PN
X

are exchangeable, i.e., invari-

ant under permutation of the random variables X1, . . . ,XN.

A general predictive system is called exchangeable if it is

the lower envelope of a collection
{

σ N
γ : γ ∈ Γ

}

of exchange-

able precise predictive systems. It is regularly exchangeable

if all predictive linear previsions Pn+1
X ,γ(⋅∣xxx) in each of these

systems σ N
γ can be uniquely derived from the joint linear pre-

vision PN
X ,γ by applying Bayes’s rule. (For this, the joint mass

functions pn
X ,γ should be strictly positive for n < N.)

3 Some results

From sequences of observations to count vectors: In

any regularly exchangeable predictive system, the predictive

lower previsions Pn+1
X

(⋅∣xxx) only depend on the sequence of

observations xxx through its count vector mmm ∈ N n
X

, with

mz := ∣{k ∈ {1, . . . ,n} : xk = z}∣,

N
n

X
:=

{

mmm ∈ ℕ
X

0 : ∑z∈X mz = n
}

.

All predictive lower previsions for given sequences with the

same count vector mmm can therefore be written as Pn+1
X

(⋅∣mmm).

N = 3

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

P3
Y
(⋅∣1,1)

P2
X
(⋅∣0,1)

P3
Y
(⋅∣1,1)

P3
Y
(⋅∣0,2)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

...

So, for regularly exchangeable predictive systems, count

vectors are a sufficient statistic. From now on, we only con-

sider (possibly non-exchangeable) predictive systems for

which this is the case.

A useful (in)equality In any regularly exchangeable predic-

tive system, it holds for all gambles f that

Pn+1
X

( f ∣mmm)≥ Pn+1
X

(Pn+2
X

( f ∣mmm+ eee⋅)∣mmm),

where n ≤ N−2 and eeex ∈N 1
X

for x ∈X such that, using the

Kronecker delta, (eeex)z = δxz. For precise regularly exchange-

able predictive systems, this becomes a ‘useful equality’.

4 Some more requirements

Representation insensitivity: Representation insensitivity

is a requirement that works between predictive lower previ-

sions for the same number of observations.

It comprises three invariance requirements:

• pooling invariance: inferences that do not depend on the

distinction between some categories should stay the same

when those categories are pooled;

• renaming invariance: apart from avoiding confusion, the

names of the categories should not matter;

• category permutation invariance: in a state of prior igno-

rance, which we consider here, the subject has no reason

to distinguish between the categories, so the inferences

should be invariant under a permutation of them.

Combining these, we can say a predictive system is represen-

tation insensitive if for all n, for any category sets X and Y ,

for any mmm ∈ N n
X

and mmm′ ∈ N n
Y

, and for any gambles f on X

and g on Y with identical ranges, the following holds:

mmm f = mmm′g ⇒ Pn+1
X

( f ∣mmm) = Pn+1
Y

(g∣mmm′),

with m f
r := ∑ f (x)=r mx. This means Pn+1

X
( f ∣mmm) only depends

on the values that f may assume, and on the number of times

each value has been observed:

Pn+1
X

( f ∣mmm) = Pn+1

f (X )(id f (X ) ∣mmm
f ),

where id f (X ) is the identity map on the range of f .

N = 3

P1
X

P2
X
(⋅∣1,0,0)

P2
X
(⋅∣0,1,0)

P2
X
(⋅∣0,0,1)

P3
X
(⋅∣1,0,1)

X = {a,b,c}

mmm = (ma,mb,mc)

linked by cat-

egory permu-

tation (b ↔ c)

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

linked by pooling

and renaming

({a,c} 7→⊥, b 7→ ⊤)

linked by specificity and

renaming (A = {a,b},

a 7→ ⊥, b 7→ ⊤)

Specificity (optional): Specificity is a requirement that

works between predictive lower previsions for a different num-

ber of observations related by pooling.

An exchangeable predictive system is specific if for all gam-

bles f and all non-trivial events A in X containing a non-zero

number mA of observations, it holds that

Pn+1
X

( f ∣mmm,A) = P
mA+1

A ( fA∣mmmA),

where fA and mmmA are the restriction of f and mmm to A. So,

knowing that the (n+1)-th observation belongs to A allows

you to ignore all the previous observations that lie outside A.

5 More results

The lower probability function: With any predictive sys-

tem we associate a map ϕ defined for all n and k ≤ n by

ϕ(n,k) := Pn+1

{0,1}(id{0,1} ∣n− k,k).

For representation insensitive systems it fully characterizes

all predictive lower probabilities (cfr. Johnson’s sufficientness

postulate) and is therefore called the lower probability func-

tion; to wit, let A be some event, and mA the associated num-

ber of observations, then

Pn+1
X

(A∣mmm) = Pn+1

{0,1}(id{0,1} ∣n−mA,mA) = ϕ(n,mA).

It allows us to draw intuitively appealing conclusions, which

are valid in any coherent representation insensitive system:

(i) the lower/upper probability of observing an event that has

not/always been observed before is zero/one;

(ii) if n remains fixed, then both the lower and upper probabil-

ity of observing A again do not decrease if mA increases;

(iii) in systems that are also regularly exchangeable: if mA re-

mains the same as n increases, then the lower probability

for observing A again does not increase.

Some representation insensitive exchangeable systems:

To start: all the P1
X

in a representation insensitive and ex-

changeable predictive system must be vacuous.

A subject that is too conservative to learn uses the regularly

exchangeable vacuous predictive system νN. All its predictive

lower previsions are vacuous, so Pn+1
X

( f ∣mmm) := min f .

A subject that believes that categories unobserved in the

past remain so in the future, uses the (not regularly) exchange-

able Haldane predictive system πN. For n> 0, all its predictive

previsions are linear and strongly tied to the observations:

Pn+1
X

( f ∣mmm) = Sn+1
X

( f ∣mmm) := ∑z∈X f (z)mz

n
.

Other systems can be formed as convex mixtures of the two

extreme ones above. We define mixing predictive systems σ N
ε

with a [0,1]-bounded mixing sequence ε of length N and

Pn+1
X

( f ∣mmm) := εnSn+1
X

( f ∣mmm)+(1− εn)min f ;

note that implicitly ε0 = 0. Representation insensitivity is re-

tained after mixing; a sufficient condition for regular exchange-

ability is the reformulated ‘useful inequality’ εn

n
≥

εn+1

n+1

(

1+ εn

n

)

.

The lower probability function of a mixing system is given

by ϕ(n,k) = εn
k
n
. So, as εn = nϕ(n,1), a mixing system can

be defined by specifying the lower probability of observing any

non-trivial event that has been observed once in n trials; it is

the most conservative system with these lower probabilities.

The imprecise Dirichlet-Multinomial model: Any mixing

system that is specific or for which the ‘useful equality’ holds,

is uniquely characterized by some s > 0 such that εn =
n

n+s

and thus
Pn+1

X
( f ∣mmm) = n

n+s
Sn+1

X
( f ∣mmm)+ s

n+s
min f .

This regularly exchangeable representation insensitive predic-

tive system is related to the imprecise Dirichlet-Multinomial

model with hyper-parameter s.
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We consider immediate predictive inference, where a subject, using a number of observa-

tions of a finite number of exchangeable random variables, is asked to coherently model his

beliefs about the next observation, in terms of a predictive lower prevision. We study when

such predictive lower previsions are representation insensitive, meaning that they are

essentially independent of the choice of the (finite) set of possible values for the random

variables. We establish that such representation insensitive predictive models have very

interesting properties, and show that among such models, the ones produced by the Impre-

cise Dirichlet-Multinomial Model are quite special in a number of ways. In the Conclusion,

we discuss the open question as to how unique the predictive lower previsions of the

Imprecise Dirichlet-Multinomial Model are in being representation insensitive.
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1. Introduction

Consider a subject who is making N > 0 successive observations of a certain phenomenon. We represent these observa-

tions by N random variables X1; . . . ;XN . By random variable, we mean a variable about whose value the subject may entertain

certain beliefs. We assume that at each successive instant k, the actual value of the random variables Xk can be determined in

principle. To fix ideas, our subject might be looking for frogs in the Amazon forest, and then Xk is the species of the kth frog he

comes across. Or, he might, as an archetypical example, be drawing balls without replacement from an urn, in which case Xk

could designate the color of the kth ball taken from the urn.
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Exchangeable lower previsions
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We extend Finetti’s [Ann. Inst. H. Poincaré 7 (1937) 1–68] notion of exchangeability to finite and countable

sequences of variables, when a subject’s beliefs about them are modelled using coherent lower previsions

rather than (linear) previsions. We derive representation theorems in both the finite and countable cases, in

terms of sampling without and with replacement, respectively.

Keywords: Bernstein polynomials; coherence; convergence in distribution; exchangeability; imprecise

probability; lower prevision; multinomial sampling; representation theorem; sampling without replacement

1. Introduction

This paper deals with belief models for both finite and countable sequences of exchangeable

random variables taking a finite number of values. When such sequences of random variables are

assumed to be exchangeable, this more-or-less means that the specific order in which they are

observed is deemed irrelevant.

The first detailed study of exchangeability was made by Finetti [5] (with the terminology of

‘equivalent’ events). Therein was proven the now famous representation theorem, which is often

interpreted as stating that a sequence of random variables is exchangeable if it is conditionally

independent and identically distributed (i.i.d.). Other important work on exchangeability was

done by, amongst many others, Hewitt and Savage [12], Heath and Sudderth [10], Diaconis and

Freedman [8] and, in the context of the behavioural theory of imprecise probabilities that we are

going to consider here, by Walley [19]. We refer to Kallenberg [14,15] for modern, measure-

theoretic discussions of exchangeability.

One of the reasons why exchangeability is deemed important, especially by Bayesians, is

that, by virtue of de Finetti’s representation theorem, an exchangeable model can be seen as a

convex mixture of multinomial models. This has given lent some support [2,5,7] to the claim

that aleatory probabilities and i.i.d. processes can be eliminated from statistics and that we can

restrict ourselves to exchangeable sequences instead; see Walley [19], Section 9.5.6 for a critical

discussion of this claim.

De Finetti presented his study of exchangeability in terms of the behavioural notion of previ-

sions, or fair prices. The central assumption underlying his approach is that a subject should be

able to specify a fair price P(f ) for any risky transaction (which we will call a gamble) f ([7],

Chapter 3). This may not always be realistic, so it has been suggested that we should explicitly

allow for a subject’s indecision, by distinguishing between his lower prevision P (f ), which is

BEJ bj v.2007/06/18 Prn:2009/06/03; 13:25 F:bej182.tex; (Diana) p. 1
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1350-7265 © 0 ISI/BS

ar
X

iv
:0

80
1.

12
65

v1
  [

m
at

h.
S

T
]  

8 
Ja

n 
20

08

EXCHANGEABLE LOWER PREVISIONS

GERT DE COOMAN, ERIK QUAEGHEBEUR, AND ENRIQUE MIRANDA

ABSTRACT. We extend de Finetti’s (1937) notion of exchangeability tofinite and count-
able sequences of variables, when a subject’s beliefs aboutthem are modelled using coher-
ent lower previsions rather than (linear) previsions. We prove representation theorems in
both the finite and the countable case, in terms of sampling without and with replacement,
respectively. We also establish a convergence result for sample means of exchangeable
sequences. Finally, we study and solve the problem of exchangeable natural extension:
how to find the most conservative (point-wise smallest) coherent and exchangeable lower
prevision that dominates a given lower prevision.

1. INTRODUCTION

This paper deals with belief models for both finite and countable sequences of exchange-
able random variables taking a finite number of values. When such sequences of random
variables are assumed to be exchangeable, this more or less means that the specific order
in which they are observed is deemed irrelevant.

The first detailed study of exchangeability was made by de Finetti (1937) (with the ter-
minology of ‘equivalent’ events). He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchange-
able if it is conditionally independent and identically distributed (IID).1 Other important
work on exchangeability was done by, amongst many others, Hewitt and Savage (1955),
Heath and Sudderth (1976), Diaconis and Freedman (1980) and, in the context of the be-
havioural theory of imprecise probabilities that we are going to consider here, by Walley
(1991). We refer to Kallenberg (2002, 2005) for modern, measure-theoretic discussions of
exchangeability.

One of the reasons why exchangeability is deemed important,especially by Bayesians,
is that, by virtue of de Finetti’s Representation Theorem, an exchangeable model can be
seen as a convex mixture of multinomial models. This has given some ground (de Finetti,
1937, 1975; Dawid, 1985) to the claim that aleatory probabilities and IID processes can be
eliminated from statistics, and that we can restrict ourselves to considering exchangeable
sequences instead.2

De Finetti presented his study of exchangeability in terms of the behavioural notion
of previsions, or fair prices. The central assumption underlying his approach is that a
subject should be able to specify a fair priceP( f ) for any risky transaction (which we
shall call agamble) f (de Finetti, 1974, Chapter 3). This is tantamount to requiring that
he should always be willing and able to decide, for any real numberr, between selling the
gamble f for r, or buying it for that price. This may not always be realistic, and for this

Key words and phrases. Exchangeability, lower prevision, Representation Theorem, Bernstein polynomials,
convergence in distribution, exchangeable natural extension, sampling without replacement, multinomial sam-
pling, imprecise probability, coherence.

1See de Finetti (1975, Section 11.4); and Cifarelli and Regazzini (1996) for an overview of de Finetti’s work.
2For a critical discussion of this claim, see Walley (1991, Section 9.5.6).
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Exchangeable
lower previsions

Symmetry
of models vers

us models of

symmetry

Gert
de Cooman and Enrique Miranda

abstract. A model for a subject’s
beliefs

about a phenomenon

may exhibit symmetry, in the sense that it is invaria
nt under cer-

tain
transform

ation
s. On the other hand, such a belief

model may be

intended to represen
t that the subject believ

es or knows that the phe-

nomenon under study exhibits symmetry. We defend the view that

these are fundamentally
different things, even

though the difference

cannot be captured by Bayesi
an belief

models. In fact,
the failu

re to

distin
guish between both situation

s leads to Laplace’
s so-ca

lled Prin-

ciple of Insufficient Reason
, which has been critic

ised
extensivel

y in

the litera
ture.

We show that there are belief
models (imprecis

e probability
mod-

els, coherent lower prevision
s) that generali

se and include the more

tradition
al Bayesi

an belief
models, but where this fundamental differ-

ence can be captured. This leads to two notion
s of symmetry

for such

belief
models: weak invaria

nce (represen
ting symmetry

of beliefs
) and

stron
g invaria

nce (modelling beliefs
of symmetry). We discuss vario

us

mathematica
l as well as more philoso

phical aspects
of these notion

s.

We also
discuss a few examples to show the relev

ance of our findings

both to probabilisti
c modelling and to stati

stica
l inferen

ce, and to the

notion
of exchangeab

ility
in partic

ular.

1 Introductio
n

This paper deals
with symmetry

in relat
ion to models of beliefs

. Consider

a model for a subject’
s beliefs

about a certa
in phenomenon. Such a belie

f

model
may be symmetric

al , in the sense that it is invaria
nt under certa

in

tran
sform

ation
s. On the other hand, a belief

model may try to capture that

the subject
believ

es that the phenomenon under study exhibits symmetry,

and we then say
that the belief

model models
symmetry

. We defend the

view that there is an importa
nt conceptual differen

ce between the two case
s:

symmetry
of beliefs

should not be confused with beliefs
of symmetry.

1

1This echoes Walley
’s [1991

, Sectio
n 9.5.6

, p. 466]
view that ‘symmetry

of evidence’

is not the same thing as ‘evidence of symmetry’.
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Abstract

We consider immediate predictive inference, where a sub-

ject, using a number of observations of a finite number

of exchangeable random variables, is asked to coherently

model his beliefs about the next observation, in terms of

a predictive lower prevision. We study when such predic-

tive lower previsions are representation insensitive, mean-

ing that they are essentially independent of the choice of

the (finite) set of possible values for the random variables.

Such representation insensitive predictive models have very

interesting properties, and among such models, the ones

produced by the Imprecise Dirichlet-Multinomial Model

are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,

lower prevision, coherence, exchangeability, representation

invariance, representation insensitivity, Imprecise Dirichlet-

Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-

servations of a certain phenomenon. We represent these

observations by N random variables X1, . . . , XN . By ran-

dom variable, we mean a variable about whose value the

subject may entertain certain beliefs. We assume that at

each successive instant k, the actual value of the random

variables Xk can be determined in principle. To fix ideas,

our subject might be drawing balls without replacement

from an urn, in which case Xk could designate the colour

of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our

subject in some way uses zero or more observations

X1, . . . , Xn made previously, i.e., those up to a certain in-

stant n ∈ {0,1, . . . ,N −1}, to predict, or make inferences

about, the values of the future, or as yet unmade, observa-

tions Xn+1, . . . , XN . Here, we only consider the problem of

immediate prediction: he is only trying to predict, or make

inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,

before making any observation, our subject knows very

little or nothing about what produces these observations. In

the urn example, this is the situation where he doesn’t know

the composition of the urn, e.g., how many balls there are,

or what their colours are. What we do assume, however, is

that our subject makes an assessment of exchangeability to

the effect that the order in which a sequence of observations

has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-

termine, beforehand, a (finite and non-empty) set X of

possible values, also called categories, for the random vari-

ables Xk. It is then sometimes held, especially by advo-

cates of a logical interpretation for probability, that our

subject’s beliefs should be represented by some given fam-

ily of predictive probability mass functions. Such a pre-

dictive family is made up of real-valued maps pn+1
X

(⋅∣x)
on X , which give, for each n = 0, . . . ,N − 1 and each

x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-

bility mass function for the (n+1)-th observation, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-

ous observations. Any such family should in particular

reflect the above-mentioned exchangeability assessment.

Cases in point are the Laplace–Bayes Rule of Succession

in the case of two categories [10], or Carnap’s more general

λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-

ample, can strongly depend on the number of elements in

the set X . This may well be considered undesirable. If for

instance, we consider drawing balls from an urn, predictive

inferences about whether the next ball will be ‘red or green’

ideally should not depend on whether we assume before-

hand that the possible categories are ‘red’, ‘green’, ‘blue’

and ‘any other colour’, or whether we take them to be ‘red

or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This

desirable property was called representation invariance by

Peter Walley [14], who argued that it cannot be satisfied

by a precise probability model, i.e., by a system consist-

ing of a family of predictive probability mass functions

pn+1
X

(⋅∣x) for every X , but that it is satisfied by the so-
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1 The setting

Sampling: A subject makes a fixed number N > 0 of

successive observations, represented by random variables

X1, . . . ,XN. For example, when drawing coloured balls without

replacement from an urn, Xk designates the unknown colour

of the k-th ball.

Immediate prediction: The subject in some way uses zero

or more observations X1, . . . ,Xn made previously (so n be-

longs to {0,1, . . . ,N − 1}), to predict, or make inferences

about, the value of the next observation Xn+1.

Families of predictive lower previsions: The subject can

determine, beforehand, a finite and non-empty set X of pos-

sible values, or categories, for the random variables.

For each n and each sequence xxx = (x1, . . . ,xn) in X n, she

can give a predictive lower prevision Pn+1
X

(⋅∣xxx) for Xn+1, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = xxx of the previous ob-

servations. It is defined on the set of all gambles f on X .

X = {a,b,c}

N = 3

n = 2

xxx = (c,a)

Let f (a) = 1, f (b) = 3, f (c) =−2,

then, e.g., P3
X
( f ∣c,a) =−1

2
.

Let A = {a,c},

then, e.g., P3
X
(A∣c,a) = 4

5
.

An X -family σ N
X

of predictive lower previsions is the set

formed for all possible observations:

σ N
X

:=
{

Pn+1
X

(⋅∣xxx) : xxx ∈ X
n and n = 0,1, . . . ,N −1

}

.

P1
X

P2
X
(⋅∣a)

P3
X
(⋅∣a,a)

P3
X
(⋅∣a,b)

P3
X
(⋅∣a,c)

P2
X
(⋅∣b)

P3
X
(⋅∣b,a)

P3
X
(⋅∣b,b)

P3
X
(⋅∣b,c)

P2
X
(⋅∣c)

P3
X
(⋅∣c,a)

P3
X
(⋅∣c,b)

P3
X
(⋅∣c,c)

X = {a,b,c}

N = 3

Precise predictive families are those that only contain pre-

dictive linear previsions Pn+1
X

(⋅∣xxx). With each of these, there

corresponds a predictive probability mass function. They in

turn allow us, using Bayes’s rule, to find the unique joint prob-

ability mass functions pn
X

on X n and the corresponding joint

linear prevision PN
X

, which models beliefs about the values

that the random variables (X1, . . . ,XN) assume jointly in X N.
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Systems of predictive lower previsions: The inferences

or predictions of a predictive X -family might depend on the

actual choice of X made. So we let our subject consider

predictive families for all conceivable choices of X . We collect

these families in a system σ N of predictive lower previsions:

σ N :=
{

σ N
X : X is a finite and non-empty set

}

.

N = 3

P1
X

P2
X
(⋅∣a)

P2
X
(⋅∣b)

P2
X
(⋅∣c)

X = {a,b,c}

P1
Y

P2
Y
(⋅∣⊥)

P3
Y
(⋅∣⊥,⊥)

P3
Y
(⋅∣⊥,⊤)

P2
X
(⋅∣⊤)

P3
Y
(⋅∣⊤,⊥)

P3
Y
(⋅∣⊤,⊤)

Y = {⊥,⊤}

...

P1
Z

P2
Z
(⋅∣★) P3

Z
(⋅∣★,★)

Z = {★}

Precise predictive systems are those that only contain pre-

cise predictive families.

Predictive systems can be partially ordered : The system σ N

is more conservative than the system λ N, if each predictive

lower prevision Pn+1
X

(⋅∣xxx) in σ N is point-wise dominated by

the corresponding predictive lower prevision Qn+1

X
(⋅∣xxx) in λ N.

ν3

σ 3
ε

π3

λ 3

σ 3

the ordering
discussed

above an ordering
of systems

encountered later

A collection
{

σ N
γ : γ ∈ Γ

}

of predictive systems may have

an infimum with respect to this partial order. Whenever it ex-

ists, this infimum system σ N can be seen as a lower envelope:

each of its predictive lower previsions Pn+1
X

(⋅∣xxx) is defined

as the lower envelope infγ∈Γ Pn+1
X ,γ(⋅∣xxx) of the predictive lower

previsions in the predictive systems σ N
γ .
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2 Requirements & Assumptions

Coherence: Coherence is a requirement on the individual

predictive lower previsions.

A predictive system is called coherent if it is the lower

envelope of a collection of precise predictive systems. This is

equivalent to requiring that all the predictive lower previsions

Pn+1
X

(⋅∣xxx) in the system should be separately coherent.

(Regular) exchangeability: Exchangeability is an assump-

tion about a family of predictive lower previsions.

A precise predictive system is exchangeable if all the asso-

ciated joint linear previsions PN
X

are exchangeable, i.e., invari-

ant under permutation of the random variables X1, . . . ,XN.

A general predictive system is called exchangeable if it is

the lower envelope of a collection
{

σ N
γ : γ ∈ Γ

}

of exchange-

able precise predictive systems. It is regularly exchangeable

if all predictive linear previsions Pn+1
X ,γ(⋅∣xxx) in each of these

systems σ N
γ can be uniquely derived from the joint linear pre-

vision PN
X ,γ by applying Bayes’s rule. (For this, the joint mass

functions pn
X ,γ should be strictly positive for n < N.)

3 Some results

From sequences of observations to count vectors: In

any regularly exchangeable predictive system, the predictive

lower previsions Pn+1
X

(⋅∣xxx) only depend on the sequence of

observations xxx through its count vector mmm ∈ N n
X

, with

mz := ∣{k ∈ {1, . . . ,n} : xk = z}∣,

N
n

X
:=

{

mmm ∈ ℕ
X

0 : ∑z∈X mz = n
}

.

All predictive lower previsions for given sequences with the

same count vector mmm can therefore be written as Pn+1
X

(⋅∣mmm).

N = 3

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

P3
Y
(⋅∣1,1)

P2
X
(⋅∣0,1)

P3
Y
(⋅∣1,1)

P3
Y
(⋅∣0,2)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

...

So, for regularly exchangeable predictive systems, count

vectors are a sufficient statistic. From now on, we only con-

sider (possibly non-exchangeable) predictive systems for

which this is the case.

A useful (in)equality In any regularly exchangeable predic-

tive system, it holds for all gambles f that

Pn+1
X

( f ∣mmm)≥ Pn+1
X

(Pn+2
X

( f ∣mmm+ eee⋅)∣mmm),

where n ≤ N−2 and eeex ∈N 1
X

for x ∈X such that, using the

Kronecker delta, (eeex)z = δxz. For precise regularly exchange-

able predictive systems, this becomes a ‘useful equality’.

4 Some more requirements

Representation insensitivity: Representation insensitivity

is a requirement that works between predictive lower previ-

sions for the same number of observations.

It comprises three invariance requirements:

• pooling invariance: inferences that do not depend on the

distinction between some categories should stay the same

when those categories are pooled;

• renaming invariance: apart from avoiding confusion, the

names of the categories should not matter;

• category permutation invariance: in a state of prior igno-

rance, which we consider here, the subject has no reason

to distinguish between the categories, so the inferences

should be invariant under a permutation of them.

Combining these, we can say a predictive system is represen-

tation insensitive if for all n, for any category sets X and Y ,

for any mmm ∈ N n
X

and mmm′ ∈ N n
Y

, and for any gambles f on X

and g on Y with identical ranges, the following holds:

mmm f = mmm′g ⇒ Pn+1
X

( f ∣mmm) = Pn+1
Y

(g∣mmm′),

with m f
r := ∑ f (x)=r mx. This means Pn+1

X
( f ∣mmm) only depends

on the values that f may assume, and on the number of times

each value has been observed:

Pn+1
X

( f ∣mmm) = Pn+1

f (X )(id f (X ) ∣mmm
f ),

where id f (X ) is the identity map on the range of f .

N = 3

P1
X

P2
X
(⋅∣1,0,0)

P2
X
(⋅∣0,1,0)

P2
X
(⋅∣0,0,1)

P3
X
(⋅∣1,0,1)

X = {a,b,c}

mmm = (ma,mb,mc)

linked by cat-

egory permu-

tation (b ↔ c)

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

linked by pooling

and renaming

({a,c} 7→⊥, b 7→ ⊤)

linked by specificity and

renaming (A = {a,b},

a 7→ ⊥, b 7→ ⊤)

Specificity (optional): Specificity is a requirement that

works between predictive lower previsions for a different num-

ber of observations related by pooling.

An exchangeable predictive system is specific if for all gam-

bles f and all non-trivial events A in X containing a non-zero

number mA of observations, it holds that

Pn+1
X

( f ∣mmm,A) = P
mA+1

A ( fA∣mmmA),

where fA and mmmA are the restriction of f and mmm to A. So,

knowing that the (n+1)-th observation belongs to A allows

you to ignore all the previous observations that lie outside A.

5 More results

The lower probability function: With any predictive sys-

tem we associate a map ϕ defined for all n and k ≤ n by

ϕ(n,k) := Pn+1

{0,1}(id{0,1} ∣n− k,k).

For representation insensitive systems it fully characterizes

all predictive lower probabilities (cfr. Johnson’s sufficientness

postulate) and is therefore called the lower probability func-

tion; to wit, let A be some event, and mA the associated num-

ber of observations, then

Pn+1
X

(A∣mmm) = Pn+1

{0,1}(id{0,1} ∣n−mA,mA) = ϕ(n,mA).

It allows us to draw intuitively appealing conclusions, which

are valid in any coherent representation insensitive system:

(i) the lower/upper probability of observing an event that has

not/always been observed before is zero/one;

(ii) if n remains fixed, then both the lower and upper probabil-

ity of observing A again do not decrease if mA increases;

(iii) in systems that are also regularly exchangeable: if mA re-

mains the same as n increases, then the lower probability

for observing A again does not increase.

Some representation insensitive exchangeable systems:

To start: all the P1
X

in a representation insensitive and ex-

changeable predictive system must be vacuous.

A subject that is too conservative to learn uses the regularly

exchangeable vacuous predictive system νN. All its predictive

lower previsions are vacuous, so Pn+1
X

( f ∣mmm) := min f .

A subject that believes that categories unobserved in the

past remain so in the future, uses the (not regularly) exchange-

able Haldane predictive system πN. For n> 0, all its predictive

previsions are linear and strongly tied to the observations:

Pn+1
X

( f ∣mmm) = Sn+1
X

( f ∣mmm) := ∑z∈X f (z)mz

n
.

Other systems can be formed as convex mixtures of the two

extreme ones above. We define mixing predictive systems σ N
ε

with a [0,1]-bounded mixing sequence ε of length N and

Pn+1
X

( f ∣mmm) := εnSn+1
X

( f ∣mmm)+(1− εn)min f ;

note that implicitly ε0 = 0. Representation insensitivity is re-

tained after mixing; a sufficient condition for regular exchange-

ability is the reformulated ‘useful inequality’ εn

n
≥

εn+1

n+1

(

1+ εn

n

)

.

The lower probability function of a mixing system is given

by ϕ(n,k) = εn
k
n
. So, as εn = nϕ(n,1), a mixing system can

be defined by specifying the lower probability of observing any

non-trivial event that has been observed once in n trials; it is

the most conservative system with these lower probabilities.

The imprecise Dirichlet-Multinomial model: Any mixing

system that is specific or for which the ‘useful equality’ holds,

is uniquely characterized by some s > 0 such that εn =
n

n+s

and thus
Pn+1

X
( f ∣mmm) = n

n+s
Sn+1

X
( f ∣mmm)+ s

n+s
min f .

This regularly exchangeable representation insensitive predic-

tive system is related to the imprecise Dirichlet-Multinomial

model with hyper-parameter s.
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We consider immediate predictive inference, where a subject, using a number of observa-

tions of a finite number of exchangeable random variables, is asked to coherently model his

beliefs about the next observation, in terms of a predictive lower prevision. We study when

such predictive lower previsions are representation insensitive, meaning that they are

essentially independent of the choice of the (finite) set of possible values for the random

variables. We establish that such representation insensitive predictive models have very

interesting properties, and show that among such models, the ones produced by the Impre-

cise Dirichlet-Multinomial Model are quite special in a number of ways. In the Conclusion,

we discuss the open question as to how unique the predictive lower previsions of the

Imprecise Dirichlet-Multinomial Model are in being representation insensitive.
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1. Introduction

Consider a subject who is making N > 0 successive observations of a certain phenomenon. We represent these observa-

tions by N random variables X1; . . . ;XN . By random variable, we mean a variable about whose value the subject may entertain

certain beliefs. We assume that at each successive instant k, the actual value of the random variables Xk can be determined in

principle. To fix ideas, our subject might be looking for frogs in the Amazon forest, and then Xk is the species of the kth frog he

comes across. Or, he might, as an archetypical example, be drawing balls without replacement from an urn, in which case Xk

could designate the color of the kth ball taken from the urn.
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Exchangeable lower previsions
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We extend Finetti’s [Ann. Inst. H. Poincaré 7 (1937) 1–68] notion of exchangeability to finite and countable

sequences of variables, when a subject’s beliefs about them are modelled using coherent lower previsions

rather than (linear) previsions. We derive representation theorems in both the finite and countable cases, in

terms of sampling without and with replacement, respectively.

Keywords: Bernstein polynomials; coherence; convergence in distribution; exchangeability; imprecise

probability; lower prevision; multinomial sampling; representation theorem; sampling without replacement

1. Introduction

This paper deals with belief models for both finite and countable sequences of exchangeable

random variables taking a finite number of values. When such sequences of random variables are

assumed to be exchangeable, this more-or-less means that the specific order in which they are

observed is deemed irrelevant.

The first detailed study of exchangeability was made by Finetti [5] (with the terminology of

‘equivalent’ events). Therein was proven the now famous representation theorem, which is often

interpreted as stating that a sequence of random variables is exchangeable if it is conditionally

independent and identically distributed (i.i.d.). Other important work on exchangeability was

done by, amongst many others, Hewitt and Savage [12], Heath and Sudderth [10], Diaconis and

Freedman [8] and, in the context of the behavioural theory of imprecise probabilities that we are

going to consider here, by Walley [19]. We refer to Kallenberg [14,15] for modern, measure-

theoretic discussions of exchangeability.

One of the reasons why exchangeability is deemed important, especially by Bayesians, is

that, by virtue of de Finetti’s representation theorem, an exchangeable model can be seen as a

convex mixture of multinomial models. This has given lent some support [2,5,7] to the claim

that aleatory probabilities and i.i.d. processes can be eliminated from statistics and that we can

restrict ourselves to exchangeable sequences instead; see Walley [19], Section 9.5.6 for a critical

discussion of this claim.

De Finetti presented his study of exchangeability in terms of the behavioural notion of previ-

sions, or fair prices. The central assumption underlying his approach is that a subject should be

able to specify a fair price P(f ) for any risky transaction (which we will call a gamble) f ([7],

Chapter 3). This may not always be realistic, so it has been suggested that we should explicitly

allow for a subject’s indecision, by distinguishing between his lower prevision P (f ), which is

BEJ bj v.2007/06/18 Prn:2009/06/03; 13:25 F:bej182.tex; (Diana) p. 1
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EXCHANGEABLE LOWER PREVISIONS

GERT DE COOMAN, ERIK QUAEGHEBEUR, AND ENRIQUE MIRANDA

ABSTRACT. We extend de Finetti’s (1937) notion of exchangeability tofinite and count-
able sequences of variables, when a subject’s beliefs aboutthem are modelled using coher-
ent lower previsions rather than (linear) previsions. We prove representation theorems in
both the finite and the countable case, in terms of sampling without and with replacement,
respectively. We also establish a convergence result for sample means of exchangeable
sequences. Finally, we study and solve the problem of exchangeable natural extension:
how to find the most conservative (point-wise smallest) coherent and exchangeable lower
prevision that dominates a given lower prevision.

1. INTRODUCTION

This paper deals with belief models for both finite and countable sequences of exchange-
able random variables taking a finite number of values. When such sequences of random
variables are assumed to be exchangeable, this more or less means that the specific order
in which they are observed is deemed irrelevant.

The first detailed study of exchangeability was made by de Finetti (1937) (with the ter-
minology of ‘equivalent’ events). He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchange-
able if it is conditionally independent and identically distributed (IID).1 Other important
work on exchangeability was done by, amongst many others, Hewitt and Savage (1955),
Heath and Sudderth (1976), Diaconis and Freedman (1980) and, in the context of the be-
havioural theory of imprecise probabilities that we are going to consider here, by Walley
(1991). We refer to Kallenberg (2002, 2005) for modern, measure-theoretic discussions of
exchangeability.

One of the reasons why exchangeability is deemed important,especially by Bayesians,
is that, by virtue of de Finetti’s Representation Theorem, an exchangeable model can be
seen as a convex mixture of multinomial models. This has given some ground (de Finetti,
1937, 1975; Dawid, 1985) to the claim that aleatory probabilities and IID processes can be
eliminated from statistics, and that we can restrict ourselves to considering exchangeable
sequences instead.2

De Finetti presented his study of exchangeability in terms of the behavioural notion
of previsions, or fair prices. The central assumption underlying his approach is that a
subject should be able to specify a fair priceP( f ) for any risky transaction (which we
shall call agamble) f (de Finetti, 1974, Chapter 3). This is tantamount to requiring that
he should always be willing and able to decide, for any real numberr, between selling the
gamble f for r, or buying it for that price. This may not always be realistic, and for this

Key words and phrases. Exchangeability, lower prevision, Representation Theorem, Bernstein polynomials,
convergence in distribution, exchangeable natural extension, sampling without replacement, multinomial sam-
pling, imprecise probability, coherence.

1See de Finetti (1975, Section 11.4); and Cifarelli and Regazzini (1996) for an overview of de Finetti’s work.
2For a critical discussion of this claim, see Walley (1991, Section 9.5.6).
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Exchangeable
lower previsions

Symmetry
of models vers

us models of

symmetry

Gert
de Cooman and Enrique Miranda

abstract. A model for a subject’s
beliefs

about a phenomenon

may exhibit symmetry, in the sense that it is invaria
nt under cer-

tain
transform

ation
s. On the other hand, such a belief

model may be

intended to represen
t that the subject believ

es or knows that the phe-

nomenon under study exhibits symmetry. We defend the view that

these are fundamentally
different things, even

though the difference

cannot be captured by Bayesi
an belief

models. In fact,
the failu

re to

distin
guish between both situation

s leads to Laplace’
s so-ca

lled Prin-

ciple of Insufficient Reason
, which has been critic

ised
extensivel

y in

the litera
ture.

We show that there are belief
models (imprecis

e probability
mod-

els, coherent lower prevision
s) that generali

se and include the more

tradition
al Bayesi

an belief
models, but where this fundamental differ-

ence can be captured. This leads to two notion
s of symmetry

for such

belief
models: weak invaria

nce (represen
ting symmetry

of beliefs
) and

stron
g invaria

nce (modelling beliefs
of symmetry). We discuss vario

us

mathematica
l as well as more philoso

phical aspects
of these notion

s.

We also
discuss a few examples to show the relev

ance of our findings

both to probabilisti
c modelling and to stati

stica
l inferen

ce, and to the

notion
of exchangeab

ility
in partic

ular.

1 Introductio
n

This paper deals
with symmetry

in relat
ion to models of beliefs

. Consider

a model for a subject’
s beliefs

about a certa
in phenomenon. Such a belie

f

model
may be symmetric

al , in the sense that it is invaria
nt under certa

in

tran
sform

ation
s. On the other hand, a belief

model may try to capture that

the subject
believ

es that the phenomenon under study exhibits symmetry,

and we then say
that the belief

model models
symmetry

. We defend the

view that there is an importa
nt conceptual differen

ce between the two case
s:

symmetry
of beliefs

should not be confused with beliefs
of symmetry.

1

1This echoes Walley
’s [1991

, Sectio
n 9.5.6

, p. 466]
view that ‘symmetry

of evidence’

is not the same thing as ‘evidence of symmetry’.
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Abstract

We consider immediate predictive inference, where a sub-

ject, using a number of observations of a finite number

of exchangeable random variables, is asked to coherently

model his beliefs about the next observation, in terms of

a predictive lower prevision. We study when such predic-

tive lower previsions are representation insensitive, mean-

ing that they are essentially independent of the choice of

the (finite) set of possible values for the random variables.

Such representation insensitive predictive models have very

interesting properties, and among such models, the ones

produced by the Imprecise Dirichlet-Multinomial Model

are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,

lower prevision, coherence, exchangeability, representation

invariance, representation insensitivity, Imprecise Dirichlet-

Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-

servations of a certain phenomenon. We represent these

observations by N random variables X1, . . . , XN . By ran-

dom variable, we mean a variable about whose value the

subject may entertain certain beliefs. We assume that at

each successive instant k, the actual value of the random

variables Xk can be determined in principle. To fix ideas,

our subject might be drawing balls without replacement

from an urn, in which case Xk could designate the colour

of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our

subject in some way uses zero or more observations

X1, . . . , Xn made previously, i.e., those up to a certain in-

stant n ∈ {0,1, . . . ,N −1}, to predict, or make inferences

about, the values of the future, or as yet unmade, observa-

tions Xn+1, . . . , XN . Here, we only consider the problem of

immediate prediction: he is only trying to predict, or make

inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,

before making any observation, our subject knows very

little or nothing about what produces these observations. In

the urn example, this is the situation where he doesn’t know

the composition of the urn, e.g., how many balls there are,

or what their colours are. What we do assume, however, is

that our subject makes an assessment of exchangeability to

the effect that the order in which a sequence of observations

has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-

termine, beforehand, a (finite and non-empty) set X of

possible values, also called categories, for the random vari-

ables Xk. It is then sometimes held, especially by advo-

cates of a logical interpretation for probability, that our

subject’s beliefs should be represented by some given fam-

ily of predictive probability mass functions. Such a pre-

dictive family is made up of real-valued maps pn+1
X

(⋅∣x)
on X , which give, for each n = 0, . . . ,N − 1 and each

x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-

bility mass function for the (n+1)-th observation, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-

ous observations. Any such family should in particular

reflect the above-mentioned exchangeability assessment.

Cases in point are the Laplace–Bayes Rule of Succession

in the case of two categories [10], or Carnap’s more general

λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-

ample, can strongly depend on the number of elements in

the set X . This may well be considered undesirable. If for

instance, we consider drawing balls from an urn, predictive

inferences about whether the next ball will be ‘red or green’

ideally should not depend on whether we assume before-

hand that the possible categories are ‘red’, ‘green’, ‘blue’

and ‘any other colour’, or whether we take them to be ‘red

or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This

desirable property was called representation invariance by

Peter Walley [14], who argued that it cannot be satisfied

by a precise probability model, i.e., by a system consist-

ing of a family of predictive probability mass functions

pn+1
X

(⋅∣x) for every X , but that it is satisfied by the so-
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1 The setting

Sampling: A subject makes a fixed number N > 0 of

successive observations, represented by random variables

X1, . . . ,XN. For example, when drawing coloured balls without

replacement from an urn, Xk designates the unknown colour

of the k-th ball.

Immediate prediction: The subject in some way uses zero

or more observations X1, . . . ,Xn made previously (so n be-

longs to {0,1, . . . ,N − 1}), to predict, or make inferences

about, the value of the next observation Xn+1.

Families of predictive lower previsions: The subject can

determine, beforehand, a finite and non-empty set X of pos-

sible values, or categories, for the random variables.

For each n and each sequence xxx = (x1, . . . ,xn) in X n, she

can give a predictive lower prevision Pn+1
X

(⋅∣xxx) for Xn+1, given

the values (X1, . . . ,Xn) = (x1, . . . ,xn) = xxx of the previous ob-

servations. It is defined on the set of all gambles f on X .

X = {a,b,c}

N = 3

n = 2

xxx = (c,a)

Let f (a) = 1, f (b) = 3, f (c) =−2,

then, e.g., P3
X
( f ∣c,a) =−1

2
.

Let A = {a,c},

then, e.g., P3
X
(A∣c,a) = 4

5
.

An X -family σ N
X

of predictive lower previsions is the set

formed for all possible observations:

σ N
X

:=
{

Pn+1
X

(⋅∣xxx) : xxx ∈ X
n and n = 0,1, . . . ,N −1

}

.

P1
X

P2
X
(⋅∣a)

P3
X
(⋅∣a,a)

P3
X
(⋅∣a,b)

P3
X
(⋅∣a,c)

P2
X
(⋅∣b)

P3
X
(⋅∣b,a)

P3
X
(⋅∣b,b)

P3
X
(⋅∣b,c)

P2
X
(⋅∣c)

P3
X
(⋅∣c,a)

P3
X
(⋅∣c,b)

P3
X
(⋅∣c,c)

X = {a,b,c}

N = 3

Precise predictive families are those that only contain pre-

dictive linear previsions Pn+1
X

(⋅∣xxx). With each of these, there

corresponds a predictive probability mass function. They in

turn allow us, using Bayes’s rule, to find the unique joint prob-

ability mass functions pn
X

on X n and the corresponding joint

linear prevision PN
X

, which models beliefs about the values

that the random variables (X1, . . . ,XN) assume jointly in X N.
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Systems of predictive lower previsions: The inferences

or predictions of a predictive X -family might depend on the

actual choice of X made. So we let our subject consider

predictive families for all conceivable choices of X . We collect

these families in a system σ N of predictive lower previsions:

σ N :=
{

σ N
X : X is a finite and non-empty set

}

.

N = 3

P1
X

P2
X
(⋅∣a)

P2
X
(⋅∣b)

P2
X
(⋅∣c)

X = {a,b,c}

P1
Y

P2
Y
(⋅∣⊥)

P3
Y
(⋅∣⊥,⊥)

P3
Y
(⋅∣⊥,⊤)

P2
X
(⋅∣⊤)

P3
Y
(⋅∣⊤,⊥)

P3
Y
(⋅∣⊤,⊤)

Y = {⊥,⊤}

...

P1
Z

P2
Z
(⋅∣★) P3

Z
(⋅∣★,★)

Z = {★}

Precise predictive systems are those that only contain pre-

cise predictive families.

Predictive systems can be partially ordered : The system σ N

is more conservative than the system λ N, if each predictive

lower prevision Pn+1
X

(⋅∣xxx) in σ N is point-wise dominated by

the corresponding predictive lower prevision Qn+1

X
(⋅∣xxx) in λ N.

ν3

σ 3
ε

π3

λ 3

σ 3

the ordering
discussed

above an ordering
of systems

encountered later

A collection
{

σ N
γ : γ ∈ Γ

}

of predictive systems may have

an infimum with respect to this partial order. Whenever it ex-

ists, this infimum system σ N can be seen as a lower envelope:

each of its predictive lower previsions Pn+1
X

(⋅∣xxx) is defined

as the lower envelope infγ∈Γ Pn+1
X ,γ(⋅∣xxx) of the predictive lower

previsions in the predictive systems σ N
γ .
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P. Walley and J.-M. Bernard. Imprecise probabilistic prediction for cate-

gorical data. Technical Report CAF-9901, Université de Paris 8, 1999.

S. L. Zabell. W. E. Johnson’s “sufficientness” postulate. The Annals of

Statistics, 10:1090–1099, 1982.

2 Requirements & Assumptions

Coherence: Coherence is a requirement on the individual

predictive lower previsions.

A predictive system is called coherent if it is the lower

envelope of a collection of precise predictive systems. This is

equivalent to requiring that all the predictive lower previsions

Pn+1
X

(⋅∣xxx) in the system should be separately coherent.

(Regular) exchangeability: Exchangeability is an assump-

tion about a family of predictive lower previsions.

A precise predictive system is exchangeable if all the asso-

ciated joint linear previsions PN
X

are exchangeable, i.e., invari-

ant under permutation of the random variables X1, . . . ,XN.

A general predictive system is called exchangeable if it is

the lower envelope of a collection
{

σ N
γ : γ ∈ Γ

}

of exchange-

able precise predictive systems. It is regularly exchangeable

if all predictive linear previsions Pn+1
X ,γ(⋅∣xxx) in each of these

systems σ N
γ can be uniquely derived from the joint linear pre-

vision PN
X ,γ by applying Bayes’s rule. (For this, the joint mass

functions pn
X ,γ should be strictly positive for n < N.)

3 Some results

From sequences of observations to count vectors: In

any regularly exchangeable predictive system, the predictive

lower previsions Pn+1
X

(⋅∣xxx) only depend on the sequence of

observations xxx through its count vector mmm ∈ N n
X

, with

mz := ∣{k ∈ {1, . . . ,n} : xk = z}∣,

N
n

X
:=

{

mmm ∈ ℕ
X

0 : ∑z∈X mz = n
}

.

All predictive lower previsions for given sequences with the

same count vector mmm can therefore be written as Pn+1
X

(⋅∣mmm).

N = 3

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

P3
Y
(⋅∣1,1)

P2
X
(⋅∣0,1)

P3
Y
(⋅∣1,1)

P3
Y
(⋅∣0,2)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

...

So, for regularly exchangeable predictive systems, count

vectors are a sufficient statistic. From now on, we only con-

sider (possibly non-exchangeable) predictive systems for

which this is the case.

A useful (in)equality In any regularly exchangeable predic-

tive system, it holds for all gambles f that

Pn+1
X

( f ∣mmm)≥ Pn+1
X

(Pn+2
X

( f ∣mmm+ eee⋅)∣mmm),

where n ≤ N−2 and eeex ∈N 1
X

for x ∈X such that, using the

Kronecker delta, (eeex)z = δxz. For precise regularly exchange-

able predictive systems, this becomes a ‘useful equality’.

4 Some more requirements

Representation insensitivity: Representation insensitivity

is a requirement that works between predictive lower previ-

sions for the same number of observations.

It comprises three invariance requirements:

• pooling invariance: inferences that do not depend on the

distinction between some categories should stay the same

when those categories are pooled;

• renaming invariance: apart from avoiding confusion, the

names of the categories should not matter;

• category permutation invariance: in a state of prior igno-

rance, which we consider here, the subject has no reason

to distinguish between the categories, so the inferences

should be invariant under a permutation of them.

Combining these, we can say a predictive system is represen-

tation insensitive if for all n, for any category sets X and Y ,

for any mmm ∈ N n
X

and mmm′ ∈ N n
Y

, and for any gambles f on X

and g on Y with identical ranges, the following holds:

mmm f = mmm′g ⇒ Pn+1
X

( f ∣mmm) = Pn+1
Y

(g∣mmm′),

with m f
r := ∑ f (x)=r mx. This means Pn+1

X
( f ∣mmm) only depends

on the values that f may assume, and on the number of times

each value has been observed:

Pn+1
X

( f ∣mmm) = Pn+1

f (X )(id f (X ) ∣mmm
f ),

where id f (X ) is the identity map on the range of f .

N = 3

P1
X

P2
X
(⋅∣1,0,0)

P2
X
(⋅∣0,1,0)

P2
X
(⋅∣0,0,1)

P3
X
(⋅∣1,0,1)

X = {a,b,c}

mmm = (ma,mb,mc)

linked by cat-

egory permu-

tation (b ↔ c)

P1
Y

P2
Y
(⋅∣1,0)

P3
Y
(⋅∣2,0)

Y = {⊥,⊤}

mmm = (m⊥,m⊤)

...

linked by pooling

and renaming

({a,c} 7→⊥, b 7→ ⊤)

linked by specificity and

renaming (A = {a,b},

a 7→ ⊥, b 7→ ⊤)

Specificity (optional): Specificity is a requirement that

works between predictive lower previsions for a different num-

ber of observations related by pooling.

An exchangeable predictive system is specific if for all gam-

bles f and all non-trivial events A in X containing a non-zero

number mA of observations, it holds that

Pn+1
X

( f ∣mmm,A) = P
mA+1

A ( fA∣mmmA),

where fA and mmmA are the restriction of f and mmm to A. So,

knowing that the (n+1)-th observation belongs to A allows

you to ignore all the previous observations that lie outside A.

5 More results

The lower probability function: With any predictive sys-

tem we associate a map ϕ defined for all n and k ≤ n by

ϕ(n,k) := Pn+1

{0,1}(id{0,1} ∣n− k,k).

For representation insensitive systems it fully characterizes

all predictive lower probabilities (cfr. Johnson’s sufficientness

postulate) and is therefore called the lower probability func-

tion; to wit, let A be some event, and mA the associated num-

ber of observations, then

Pn+1
X

(A∣mmm) = Pn+1

{0,1}(id{0,1} ∣n−mA,mA) = ϕ(n,mA).

It allows us to draw intuitively appealing conclusions, which

are valid in any coherent representation insensitive system:

(i) the lower/upper probability of observing an event that has

not/always been observed before is zero/one;

(ii) if n remains fixed, then both the lower and upper probabil-

ity of observing A again do not decrease if mA increases;

(iii) in systems that are also regularly exchangeable: if mA re-

mains the same as n increases, then the lower probability

for observing A again does not increase.

Some representation insensitive exchangeable systems:

To start: all the P1
X

in a representation insensitive and ex-

changeable predictive system must be vacuous.

A subject that is too conservative to learn uses the regularly

exchangeable vacuous predictive system νN. All its predictive

lower previsions are vacuous, so Pn+1
X

( f ∣mmm) := min f .

A subject that believes that categories unobserved in the

past remain so in the future, uses the (not regularly) exchange-

able Haldane predictive system πN. For n> 0, all its predictive

previsions are linear and strongly tied to the observations:

Pn+1
X

( f ∣mmm) = Sn+1
X

( f ∣mmm) := ∑z∈X f (z)mz

n
.

Other systems can be formed as convex mixtures of the two

extreme ones above. We define mixing predictive systems σ N
ε

with a [0,1]-bounded mixing sequence ε of length N and

Pn+1
X

( f ∣mmm) := εnSn+1
X

( f ∣mmm)+(1− εn)min f ;

note that implicitly ε0 = 0. Representation insensitivity is re-

tained after mixing; a sufficient condition for regular exchange-

ability is the reformulated ‘useful inequality’ εn

n
≥

εn+1

n+1

(

1+ εn

n

)

.

The lower probability function of a mixing system is given

by ϕ(n,k) = εn
k
n
. So, as εn = nϕ(n,1), a mixing system can

be defined by specifying the lower probability of observing any

non-trivial event that has been observed once in n trials; it is

the most conservative system with these lower probabilities.

The imprecise Dirichlet-Multinomial model: Any mixing

system that is specific or for which the ‘useful equality’ holds,

is uniquely characterized by some s > 0 such that εn =
n

n+s

and thus
Pn+1

X
( f ∣mmm) = n

n+s
Sn+1

X
( f ∣mmm)+ s

n+s
min f .

This regularly exchangeable representation insensitive predic-

tive system is related to the imprecise Dirichlet-Multinomial

model with hyper-parameter s.
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We consider immediate predictive inference, where a subject, using a number of observa-

tions of a finite number of exchangeable random variables, is asked to coherently model his

beliefs about the next observation, in terms of a predictive lower prevision. We study when

such predictive lower previsions are representation insensitive, meaning that they are

essentially independent of the choice of the (finite) set of possible values for the random

variables. We establish that such representation insensitive predictive models have very

interesting properties, and show that among such models, the ones produced by the Impre-

cise Dirichlet-Multinomial Model are quite special in a number of ways. In the Conclusion,

we discuss the open question as to how unique the predictive lower previsions of the

Imprecise Dirichlet-Multinomial Model are in being representation insensitive.
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1. Introduction

Consider a subject who is making N > 0 successive observations of a certain phenomenon. We represent these observa-

tions by N random variables X1; . . . ;XN . By random variable, we mean a variable about whose value the subject may entertain

certain beliefs. We assume that at each successive instant k, the actual value of the random variables Xk can be determined in

principle. To fix ideas, our subject might be looking for frogs in the Amazon forest, and then Xk is the species of the kth frog he

comes across. Or, he might, as an archetypical example, be drawing balls without replacement from an urn, in which case Xk

could designate the color of the kth ball taken from the urn.
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Exchangeable lower previsions
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We extend Finetti’s [Ann. Inst. H. Poincaré 7 (1937) 1–68] notion of exchangeability to finite and countable

sequences of variables, when a subject’s beliefs about them are modelled using coherent lower previsions

rather than (linear) previsions. We derive representation theorems in both the finite and countable cases, in

terms of sampling without and with replacement, respectively.

Keywords: Bernstein polynomials; coherence; convergence in distribution; exchangeability; imprecise

probability; lower prevision; multinomial sampling; representation theorem; sampling without replacement

1. Introduction

This paper deals with belief models for both finite and countable sequences of exchangeable

random variables taking a finite number of values. When such sequences of random variables are

assumed to be exchangeable, this more-or-less means that the specific order in which they are

observed is deemed irrelevant.

The first detailed study of exchangeability was made by Finetti [5] (with the terminology of

‘equivalent’ events). Therein was proven the now famous representation theorem, which is often

interpreted as stating that a sequence of random variables is exchangeable if it is conditionally

independent and identically distributed (i.i.d.). Other important work on exchangeability was

done by, amongst many others, Hewitt and Savage [12], Heath and Sudderth [10], Diaconis and

Freedman [8] and, in the context of the behavioural theory of imprecise probabilities that we are

going to consider here, by Walley [19]. We refer to Kallenberg [14,15] for modern, measure-

theoretic discussions of exchangeability.

One of the reasons why exchangeability is deemed important, especially by Bayesians, is

that, by virtue of de Finetti’s representation theorem, an exchangeable model can be seen as a

convex mixture of multinomial models. This has given lent some support [2,5,7] to the claim

that aleatory probabilities and i.i.d. processes can be eliminated from statistics and that we can

restrict ourselves to exchangeable sequences instead; see Walley [19], Section 9.5.6 for a critical

discussion of this claim.

De Finetti presented his study of exchangeability in terms of the behavioural notion of previ-

sions, or fair prices. The central assumption underlying his approach is that a subject should be

able to specify a fair price P(f ) for any risky transaction (which we will call a gamble) f ([7],

Chapter 3). This may not always be realistic, so it has been suggested that we should explicitly

allow for a subject’s indecision, by distinguishing between his lower prevision P (f ), which is
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EXCHANGEABLE LOWER PREVISIONS

GERT DE COOMAN, ERIK QUAEGHEBEUR, AND ENRIQUE MIRANDA

ABSTRACT. We extend de Finetti’s (1937) notion of exchangeability tofinite and count-
able sequences of variables, when a subject’s beliefs aboutthem are modelled using coher-
ent lower previsions rather than (linear) previsions. We prove representation theorems in
both the finite and the countable case, in terms of sampling without and with replacement,
respectively. We also establish a convergence result for sample means of exchangeable
sequences. Finally, we study and solve the problem of exchangeable natural extension:
how to find the most conservative (point-wise smallest) coherent and exchangeable lower
prevision that dominates a given lower prevision.

1. INTRODUCTION

This paper deals with belief models for both finite and countable sequences of exchange-
able random variables taking a finite number of values. When such sequences of random
variables are assumed to be exchangeable, this more or less means that the specific order
in which they are observed is deemed irrelevant.

The first detailed study of exchangeability was made by de Finetti (1937) (with the ter-
minology of ‘equivalent’ events). He proved the now famous Representation Theorem,
which is often interpreted as stating that a sequence of random variables is exchange-
able if it is conditionally independent and identically distributed (IID).1 Other important
work on exchangeability was done by, amongst many others, Hewitt and Savage (1955),
Heath and Sudderth (1976), Diaconis and Freedman (1980) and, in the context of the be-
havioural theory of imprecise probabilities that we are going to consider here, by Walley
(1991). We refer to Kallenberg (2002, 2005) for modern, measure-theoretic discussions of
exchangeability.

One of the reasons why exchangeability is deemed important,especially by Bayesians,
is that, by virtue of de Finetti’s Representation Theorem, an exchangeable model can be
seen as a convex mixture of multinomial models. This has given some ground (de Finetti,
1937, 1975; Dawid, 1985) to the claim that aleatory probabilities and IID processes can be
eliminated from statistics, and that we can restrict ourselves to considering exchangeable
sequences instead.2

De Finetti presented his study of exchangeability in terms of the behavioural notion
of previsions, or fair prices. The central assumption underlying his approach is that a
subject should be able to specify a fair priceP( f ) for any risky transaction (which we
shall call agamble) f (de Finetti, 1974, Chapter 3). This is tantamount to requiring that
he should always be willing and able to decide, for any real numberr, between selling the
gamble f for r, or buying it for that price. This may not always be realistic, and for this

Key words and phrases. Exchangeability, lower prevision, Representation Theorem, Bernstein polynomials,
convergence in distribution, exchangeable natural extension, sampling without replacement, multinomial sam-
pling, imprecise probability, coherence.

1See de Finetti (1975, Section 11.4); and Cifarelli and Regazzini (1996) for an overview of de Finetti’s work.
2For a critical discussion of this claim, see Walley (1991, Section 9.5.6).
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Exchangeable
lower previsions

Symmetry
of models vers

us models of

symmetry

Gert
de Cooman and Enrique Miranda

abstract. A model for a subject’s
beliefs

about a phenomenon

may exhibit symmetry, in the sense that it is invaria
nt under cer-

tain
transform

ation
s. On the other hand, such a belief

model may be

intended to represen
t that the subject believ

es or knows that the phe-

nomenon under study exhibits symmetry. We defend the view that

these are fundamentally
different things, even

though the difference

cannot be captured by Bayesi
an belief

models. In fact,
the failu

re to

distin
guish between both situation

s leads to Laplace’
s so-ca

lled Prin-

ciple of Insufficient Reason
, which has been critic

ised
extensivel

y in

the litera
ture.

We show that there are belief
models (imprecis

e probability
mod-

els, coherent lower prevision
s) that generali

se and include the more

tradition
al Bayesi

an belief
models, but where this fundamental differ-

ence can be captured. This leads to two notion
s of symmetry

for such

belief
models: weak invaria

nce (represen
ting symmetry

of beliefs
) and

stron
g invaria

nce (modelling beliefs
of symmetry). We discuss vario

us

mathematica
l as well as more philoso

phical aspects
of these notion

s.

We also
discuss a few examples to show the relev

ance of our findings

both to probabilisti
c modelling and to stati

stica
l inferen

ce, and to the

notion
of exchangeab

ility
in partic

ular.

1 Introductio
n

This paper deals
with symmetry

in relat
ion to models of beliefs

. Consider

a model for a subject’
s beliefs

about a certa
in phenomenon. Such a belie

f

model
may be symmetric

al , in the sense that it is invaria
nt under certa

in

tran
sform

ation
s. On the other hand, a belief

model may try to capture that

the subject
believ

es that the phenomenon under study exhibits symmetry,

and we then say
that the belief

model models
symmetry

. We defend the

view that there is an importa
nt conceptual differen

ce between the two case
s:

symmetry
of beliefs

should not be confused with beliefs
of symmetry.

1

1This echoes Walley
’s [1991

, Sectio
n 9.5.6

, p. 466]
view that ‘symmetry

of evidence’

is not the same thing as ‘evidence of symmetry’.
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Exchangeability for sets of desirable gambles
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General context: experiments & gambles

A finite possibility space Ω of outcomes of some experiment.

A subject who is uncertain about the experiment’s outcome.

Gambles f ∈ G (Ω) := RΩ , interpreted as uncertain rewards:
f (ω) when the experiment’s outcome is ω .

Ω := {ω,ω ′}

f

f (ω)

f (ω ′)

0
A gamble f is desirable to the subject if he
accepts the following transaction:

(i) the actual outcome ω is determined, and
(ii) the subject’s capital is changed by f (ω).

The zero gamble 0 is not desirable.

Coherent sets of desirable gambles

A subject’s set of desirable gambles R ⊆ G (Ω) models his beliefs
about the experiment’s outcome.

G +
0 (Ω)

G −(Ω)

The set of desirable gambles R is coherent
if it satisfies the following rationality require-
ments: ( f , f1, f2 ∈ G (Ω), λ > 0)
D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];

R RD4. if f1, f2 ∈R then f1 + f2 ∈R
[combination].

Requirements D3 and D4 make R
a cone: coni(R) = R.

Sets of weakly desirable gambles

The subject considers a gamble f in G (Ω) weakly desirable if
by adding any desirable gamble to it, another desirable gamble is
obtained; so if f ′ ∈R then f + f ′ ∈R.

The subject’s set of weakly desirable gambles is

DR := { f ∈ G (Ω) : f +R ⊆R}.

The set of weakly desirable gambles DR corresponding to a coher-
ent set of desirable gambles R satisfies the following properties:
( f , f1, f2 ∈ G (Ω), λ ≥ 0)
WD1. if f < 0 then f /∈DR [avoiding partial loss];
WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];

DR DR
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR

[combination].

DR is the closure of R, excluding
gambles in G −0 (Ω).

Assessments & their natural extension

An assessment can consist of a set A ⊆ G (Ω) considered desir-
able by the subject.

A E (A )AThe assessment A avoids non-positivity if the
intersection of coni(A ) and G −0 (Ω) is empty.

The natural extension of A is

E (A ) := coni
(
G +

0 (Ω)∪A
)
.

If A avoids non-positivity, then E (A ) is the smallest coherent set
of desirable gambles including A .

Updating sets of desirable gambles

The subject observes, or considers the possibility of observing, an
event B of Ω .

Contingent on observing B, the subject models his beliefs using an
updated set of desirable gambles, the subset of G (B) given by

RcB := { fB : IB f ∈R}.

If R is a coherent set of desirable gambles on Ω , then RcB is a
coherent set of desirable gambles on B.

Coherent previsions & desirability

The lower prevision of a gamble f associated to a set of desirable
gambles A is

PA ( f ) := sup{µ ∈ R : f −µ ∈A }.

Its conjugate upper prevision PA ( f )

f

PR( f )

f

PR( f )
is equal to −PA (− f ).

A lower prevision P is coherent if there
exists some coherent set of desirable
gambles R such that P = PR = PDR

.

Coherent lower previsions are less expressive uncertainty models
than coherent sets of desirable gambles.
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Specific context: finite sequences

The experiment consists of the observation of the value of a se-
quence X1, . . . , XN of random variables for which X is the finite set
of possible values. So the possibility

X := { , }, N := 3

x := ( , , )
space Ω is X N and x = (x1, . . . ,xN)
is one of its elements.

PN is the set of all permutations π of the index set {1, . . . ,N}.

The associated permutation of X N is defined by (πx)k = xπ(k).

It is lifted to a permutation π t of G (X N) by letting π t f = f ◦π .

With every sequence of observations corresponds a count vector in

N N = {m ∈ NX : ∑z∈X mz = N}.

The counting map T N: X N→N N maps T 3( , , ) = (1,2)
a sequence x to a vector m = T N(x).

Permuted sequences have the same count vector; a permutation
invariant atom is

[m] := {y ∈X N : T N(y) = m}.

[1,2] = {( , , ),( , , ),( , , )}

Exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this means
that for any gamble f and any permutation π , he finds exchanging
π t f for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

DPN := { f −π
t f : f ∈ G (X N) and π ∈PN}.

If DPN consists of weakly desirable gambles, then so does its con-
ical hull DUN = coni(DPN) = span(DPN).

A coherent set R of desirable gambles on X N is called exchange-
able if DUN ⊆DR, or equivalently, if

DUN +R ⊆R.

If R is coherent and exchangeable then it is also permutable: for
all f in R and all π in PN, it holds that π t f ∈R.

Exchangeable natural extension

The assessment A avoids non-positivity under exchangeability if
A +DUN avoids non-positivity.

The exchangeable natural extension of A is

E N
ex(A ) := DUN +E (A ).

If A avoids non-positivity under exchangeability, then E N
ex(A ) is the

smallest exchangeable coherent set of desirable gambles includ-
ing A .

Updating exchangeable models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count vec-
tor m̌ in N ň of the first ň variables X1, . . . , Xň; this means observing
the event {x̌}×X n̂ or [m̌]×X n̂. We are interested in inferences
about the remaining n̂ = N− ň variables.

Contingent on observing x̌ or m̌, the subject models his beliefs using
updated sets of desirable gambles, the subsets of G (X n̂) that are

Rcx̌ := { f (x̌, ·) : I{x̌}×X n̂ f ∈R},
Rcm̌ := { f (y̌, ·) : I[m̌]×X n̂ f ∈R and y̌ ∈ [m̌]}.

If R is a coherent and exchangeable set of desirable gambles
on X N, then Rcx̌ and Rcm̌ are coherent and exchangeable sets
of desirable gambles on X n̂.

Under exchangeability, count vectors are sufficient statistics:
if T ň(x̌) = m̌, then Rcx̌ = Rcm̌.

Exchangeable previsions

A lower prevision P on G (X N) is exchangeable if there is some ex-
changeable coherent set of desirable gambles R such that P = PR.
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The set of permutation invariant sequence gambles is

GPN(X N) := { f ∈ G (X N) : (∀π ∈PN)π t f = f}.

The projection of a sequence gamble f onto a permutation invariant
sequence gamble is

exN( f ) := 1
N! ∑π∈PN

π t f = ∑m∈N N MuHyN( f |m)I[m],

where its value on an invariant atom [m] is given by

MuHyN( f |m) := 1
|[m]|∑y∈[m] f (y).

The count gamble corresponding to the sequence gamble f is

MuHyN( f ) := MuHyN( f |·).

The permutation invariant sequence gamble in a one-to-one corres-
pondence with the count gamble g is

TN(g) := g◦T N.

Representation

A set of desirable gambles R on X N is coherent and exchangeable
iff there is some coherent set S of desirable gambles on N N – its
count representation – such that

R = (MuHyN)−1(S ),

and in that case this S is uniquely determined by

S = {g ∈ G (N N) : TN(g) ∈R}= MuHyN(R).

Exchangeable natural extension &
representation

The assessment A ⊆X N avoids non-positivity under exchange-
ability if MuHyN(A ) avoids non-positivity.

A nice result: MuHyN(E N
ex(A )) = E (MuHyN(A )).

2G (X N) 2G (N N)

2G (X N) 2G (N N)

MuHyN

MuHyN

E N
ex E

Representing updated models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count
vector m̌ = T ň(x̌) in N ň of the first ň variables X1, . . . , Xň.

If R is a coherent and exchangeable set of desirable gambles
on X N, then the representation of the two – because of sufficiency –
identical updated models he uses is

S cm̌ := MuHyn̂(Rcm̌).

This representation is not an updated model of the representation
S = MuHyN(R) of R. They are however related by

S cm = {g(m̌+ ·) : Lm̌g ∈S },

where we use the likelihood function, defined for every count vec-
tor m in N n by

Lm̌(m) :=
|[m̌]| |[m− m̌]|
|[m]|

,

which is zero when m 6≥ m̌.

Exchangeable previsions & representation

A lower prevision P on G (X N) is coherent and exchangeable iff
there is some coherent lower prevision Q on G (N N) – its count rep-
resentation – such that P = Q◦MuHyN. In that case Q is uniquely
determined by Q = P◦TN.
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General context: experiments & gambles

A finite possibility space Ω of outcomes of some experiment.

A subject who is uncertain about the experiment’s outcome.

Gambles f ∈ G (Ω) := RΩ , interpreted as uncertain rewards:
f (ω) when the experiment’s outcome is ω .

Ω := {ω,ω ′}

f

f (ω)

f (ω ′)

0
A gamble f is desirable to the subject if he
accepts the following transaction:

(i) the actual outcome ω is determined, and
(ii) the subject’s capital is changed by f (ω).

The zero gamble 0 is not desirable.

Coherent sets of desirable gambles

A subject’s set of desirable gambles R ⊆ G (Ω) models his beliefs
about the experiment’s outcome.

G +
0 (Ω)

G −(Ω)

The set of desirable gambles R is coherent
if it satisfies the following rationality require-
ments: ( f , f1, f2 ∈ G (Ω), λ > 0)
D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];

R RD4. if f1, f2 ∈R then f1 + f2 ∈R
[combination].

Requirements D3 and D4 make R
a cone: coni(R) = R.

Sets of weakly desirable gambles

The subject considers a gamble f in G (Ω) weakly desirable if
by adding any desirable gamble to it, another desirable gamble is
obtained; so if f ′ ∈R then f + f ′ ∈R.

The subject’s set of weakly desirable gambles is

DR := { f ∈ G (Ω) : f +R ⊆R}.

The set of weakly desirable gambles DR corresponding to a coher-
ent set of desirable gambles R satisfies the following properties:
( f , f1, f2 ∈ G (Ω), λ ≥ 0)
WD1. if f < 0 then f /∈DR [avoiding partial loss];
WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];

DR DR
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR

[combination].

DR is the closure of R, excluding
gambles in G −0 (Ω).

Assessments & their natural extension

An assessment can consist of a set A ⊆ G (Ω) considered desir-
able by the subject.

A E (A )AThe assessment A avoids non-positivity if the
intersection of coni(A ) and G −0 (Ω) is empty.

The natural extension of A is

E (A ) := coni
(
G +

0 (Ω)∪A
)
.

If A avoids non-positivity, then E (A ) is the smallest coherent set
of desirable gambles including A .

Updating sets of desirable gambles

The subject observes, or considers the possibility of observing, an
event B of Ω .

Contingent on observing B, the subject models his beliefs using an
updated set of desirable gambles, the subset of G (B) given by

RcB := { fB : IB f ∈R}.

If R is a coherent set of desirable gambles on Ω , then RcB is a
coherent set of desirable gambles on B.

Coherent previsions & desirability

The lower prevision of a gamble f associated to a set of desirable
gambles A is

PA ( f ) := sup{µ ∈ R : f −µ ∈A }.

Its conjugate upper prevision PA ( f )

f

PR( f )

f

PR( f )
is equal to −PA (− f ).

A lower prevision P is coherent if there
exists some coherent set of desirable
gambles R such that P = PR = PDR

.

Coherent lower previsions are less expressive uncertainty models
than coherent sets of desirable gambles.
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Specific context: finite sequences

The experiment consists of the observation of the value of a se-
quence X1, . . . , XN of random variables for which X is the finite set
of possible values. So the possibility

X := { , }, N := 3

x := ( , , )
space Ω is X N and x = (x1, . . . ,xN)
is one of its elements.

PN is the set of all permutations π of the index set {1, . . . ,N}.

The associated permutation of X N is defined by (πx)k = xπ(k).

It is lifted to a permutation π t of G (X N) by letting π t f = f ◦π .

With every sequence of observations corresponds a count vector in

N N = {m ∈ NX : ∑z∈X mz = N}.

The counting map T N: X N→N N maps T 3( , , ) = (1,2)
a sequence x to a vector m = T N(x).

Permuted sequences have the same count vector; a permutation
invariant atom is

[m] := {y ∈X N : T N(y) = m}.

[1,2] = {( , , ),( , , ),( , , )}

Exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this means
that for any gamble f and any permutation π , he finds exchanging
π t f for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

DPN := { f −π
t f : f ∈ G (X N) and π ∈PN}.

If DPN consists of weakly desirable gambles, then so does its con-
ical hull DUN = coni(DPN) = span(DPN).

A coherent set R of desirable gambles on X N is called exchange-
able if DUN ⊆DR, or equivalently, if

DUN +R ⊆R.

If R is coherent and exchangeable then it is also permutable: for
all f in R and all π in PN, it holds that π t f ∈R.

Exchangeable natural extension

The assessment A avoids non-positivity under exchangeability if
A +DUN avoids non-positivity.

The exchangeable natural extension of A is

E N
ex(A ) := DUN +E (A ).

If A avoids non-positivity under exchangeability, then E N
ex(A ) is the

smallest exchangeable coherent set of desirable gambles includ-
ing A .

Updating exchangeable models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count vec-
tor m̌ in N ň of the first ň variables X1, . . . , Xň; this means observing
the event {x̌}×X n̂ or [m̌]×X n̂. We are interested in inferences
about the remaining n̂ = N− ň variables.

Contingent on observing x̌ or m̌, the subject models his beliefs using
updated sets of desirable gambles, the subsets of G (X n̂) that are

Rcx̌ := { f (x̌, ·) : I{x̌}×X n̂ f ∈R},
Rcm̌ := { f (y̌, ·) : I[m̌]×X n̂ f ∈R and y̌ ∈ [m̌]}.

If R is a coherent and exchangeable set of desirable gambles
on X N, then Rcx̌ and Rcm̌ are coherent and exchangeable sets
of desirable gambles on X n̂.

Under exchangeability, count vectors are sufficient statistics:
if T ň(x̌) = m̌, then Rcx̌ = Rcm̌.

Exchangeable previsions

A lower prevision P on G (X N) is exchangeable if there is some ex-
changeable coherent set of desirable gambles R such that P = PR.
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The set of permutation invariant sequence gambles is

GPN(X N) := { f ∈ G (X N) : (∀π ∈PN)π t f = f}.

The projection of a sequence gamble f onto a permutation invariant
sequence gamble is

exN( f ) := 1
N! ∑π∈PN

π t f = ∑m∈N N MuHyN( f |m)I[m],

where its value on an invariant atom [m] is given by

MuHyN( f |m) := 1
|[m]|∑y∈[m] f (y).

The count gamble corresponding to the sequence gamble f is

MuHyN( f ) := MuHyN( f |·).

The permutation invariant sequence gamble in a one-to-one corres-
pondence with the count gamble g is

TN(g) := g◦T N.

Representation

A set of desirable gambles R on X N is coherent and exchangeable
iff there is some coherent set S of desirable gambles on N N – its
count representation – such that

R = (MuHyN)−1(S ),

and in that case this S is uniquely determined by

S = {g ∈ G (N N) : TN(g) ∈R}= MuHyN(R).

Exchangeable natural extension &
representation

The assessment A ⊆X N avoids non-positivity under exchange-
ability if MuHyN(A ) avoids non-positivity.

A nice result: MuHyN(E N
ex(A )) = E (MuHyN(A )).
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Representing updated models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count
vector m̌ = T ň(x̌) in N ň of the first ň variables X1, . . . , Xň.

If R is a coherent and exchangeable set of desirable gambles
on X N, then the representation of the two – because of sufficiency –
identical updated models he uses is

S cm̌ := MuHyn̂(Rcm̌).

This representation is not an updated model of the representation
S = MuHyN(R) of R. They are however related by

S cm = {g(m̌+ ·) : Lm̌g ∈S },

where we use the likelihood function, defined for every count vec-
tor m in N n by

Lm̌(m) :=
|[m̌]| |[m− m̌]|
|[m]|

,

which is zero when m 6≥ m̌.

Exchangeable previsions & representation

A lower prevision P on G (X N) is coherent and exchangeable iff
there is some coherent lower prevision Q on G (N N) – its count rep-
resentation – such that P = Q◦MuHyN. In that case Q is uniquely
determined by Q = P◦TN.
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General context: experiments & gambles

A finite possibility space Ω of outcomes of some experiment.

A subject who is uncertain about the experiment’s outcome.

Gambles f ∈ G (Ω) := RΩ , interpreted as uncertain rewards:
f (ω) when the experiment’s outcome is ω .

Ω := {ω,ω ′}

f

f (ω)

f (ω ′)

0
A gamble f is desirable to the subject if he
accepts the following transaction:

(i) the actual outcome ω is determined, and
(ii) the subject’s capital is changed by f (ω).

The zero gamble 0 is not desirable.

Coherent sets of desirable gambles

A subject’s set of desirable gambles R ⊆ G (Ω) models his beliefs
about the experiment’s outcome.

G +
0 (Ω)

G −(Ω)

The set of desirable gambles R is coherent
if it satisfies the following rationality require-
ments: ( f , f1, f2 ∈ G (Ω), λ > 0)
D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];

R RD4. if f1, f2 ∈R then f1 + f2 ∈R
[combination].

Requirements D3 and D4 make R
a cone: coni(R) = R.

Sets of weakly desirable gambles

The subject considers a gamble f in G (Ω) weakly desirable if
by adding any desirable gamble to it, another desirable gamble is
obtained; so if f ′ ∈R then f + f ′ ∈R.

The subject’s set of weakly desirable gambles is

DR := { f ∈ G (Ω) : f +R ⊆R}.

The set of weakly desirable gambles DR corresponding to a coher-
ent set of desirable gambles R satisfies the following properties:
( f , f1, f2 ∈ G (Ω), λ ≥ 0)
WD1. if f < 0 then f /∈DR [avoiding partial loss];
WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];

DR DR
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR

[combination].

DR is the closure of R, excluding
gambles in G −0 (Ω).

Assessments & their natural extension

An assessment can consist of a set A ⊆ G (Ω) considered desir-
able by the subject.

A E (A )AThe assessment A avoids non-positivity if the
intersection of coni(A ) and G −0 (Ω) is empty.

The natural extension of A is

E (A ) := coni
(
G +

0 (Ω)∪A
)
.

If A avoids non-positivity, then E (A ) is the smallest coherent set
of desirable gambles including A .

Updating sets of desirable gambles

The subject observes, or considers the possibility of observing, an
event B of Ω .

Contingent on observing B, the subject models his beliefs using an
updated set of desirable gambles, the subset of G (B) given by

RcB := { fB : IB f ∈R}.

If R is a coherent set of desirable gambles on Ω , then RcB is a
coherent set of desirable gambles on B.

Coherent previsions & desirability

The lower prevision of a gamble f associated to a set of desirable
gambles A is

PA ( f ) := sup{µ ∈ R : f −µ ∈A }.

Its conjugate upper prevision PA ( f )

f

PR( f )

f

PR( f )
is equal to −PA (− f ).

A lower prevision P is coherent if there
exists some coherent set of desirable
gambles R such that P = PR = PDR

.

Coherent lower previsions are less expressive uncertainty models
than coherent sets of desirable gambles.
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Specific context: finite sequences

The experiment consists of the observation of the value of a se-
quence X1, . . . , XN of random variables for which X is the finite set
of possible values. So the possibility

X := { , }, N := 3

x := ( , , )
space Ω is X N and x = (x1, . . . ,xN)
is one of its elements.

PN is the set of all permutations π of the index set {1, . . . ,N}.

The associated permutation of X N is defined by (πx)k = xπ(k).

It is lifted to a permutation π t of G (X N) by letting π t f = f ◦π .

With every sequence of observations corresponds a count vector in

N N = {m ∈ NX : ∑z∈X mz = N}.

The counting map T N: X N→N N maps T 3( , , ) = (1,2)
a sequence x to a vector m = T N(x).

Permuted sequences have the same count vector; a permutation
invariant atom is

[m] := {y ∈X N : T N(y) = m}.

[1,2] = {( , , ),( , , ),( , , )}

Exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this means
that for any gamble f and any permutation π , he finds exchanging
π t f for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

DPN := { f −π
t f : f ∈ G (X N) and π ∈PN}.

If DPN consists of weakly desirable gambles, then so does its con-
ical hull DUN = coni(DPN) = span(DPN).

A coherent set R of desirable gambles on X N is called exchange-
able if DUN ⊆DR, or equivalently, if

DUN +R ⊆R.

If R is coherent and exchangeable then it is also permutable: for
all f in R and all π in PN, it holds that π t f ∈R.

Exchangeable natural extension

The assessment A avoids non-positivity under exchangeability if
A +DUN avoids non-positivity.

The exchangeable natural extension of A is

E N
ex(A ) := DUN +E (A ).

If A avoids non-positivity under exchangeability, then E N
ex(A ) is the

smallest exchangeable coherent set of desirable gambles includ-
ing A .

Updating exchangeable models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count vec-
tor m̌ in N ň of the first ň variables X1, . . . , Xň; this means observing
the event {x̌}×X n̂ or [m̌]×X n̂. We are interested in inferences
about the remaining n̂ = N− ň variables.

Contingent on observing x̌ or m̌, the subject models his beliefs using
updated sets of desirable gambles, the subsets of G (X n̂) that are

Rcx̌ := { f (x̌, ·) : I{x̌}×X n̂ f ∈R},
Rcm̌ := { f (y̌, ·) : I[m̌]×X n̂ f ∈R and y̌ ∈ [m̌]}.

If R is a coherent and exchangeable set of desirable gambles
on X N, then Rcx̌ and Rcm̌ are coherent and exchangeable sets
of desirable gambles on X n̂.

Under exchangeability, count vectors are sufficient statistics:
if T ň(x̌) = m̌, then Rcx̌ = Rcm̌.

Exchangeable previsions

A lower prevision P on G (X N) is exchangeable if there is some ex-
changeable coherent set of desirable gambles R such that P = PR.
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The set of permutation invariant sequence gambles is

GPN(X N) := { f ∈ G (X N) : (∀π ∈PN)π t f = f}.

The projection of a sequence gamble f onto a permutation invariant
sequence gamble is

exN( f ) := 1
N! ∑π∈PN

π t f = ∑m∈N N MuHyN( f |m)I[m],

where its value on an invariant atom [m] is given by

MuHyN( f |m) := 1
|[m]|∑y∈[m] f (y).

The count gamble corresponding to the sequence gamble f is

MuHyN( f ) := MuHyN( f |·).

The permutation invariant sequence gamble in a one-to-one corres-
pondence with the count gamble g is

TN(g) := g◦T N.

Representation

A set of desirable gambles R on X N is coherent and exchangeable
iff there is some coherent set S of desirable gambles on N N – its
count representation – such that

R = (MuHyN)−1(S ),

and in that case this S is uniquely determined by

S = {g ∈ G (N N) : TN(g) ∈R}= MuHyN(R).

Exchangeable natural extension &
representation

The assessment A ⊆X N avoids non-positivity under exchange-
ability if MuHyN(A ) avoids non-positivity.

A nice result: MuHyN(E N
ex(A )) = E (MuHyN(A )).
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Representing updated models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count
vector m̌ = T ň(x̌) in N ň of the first ň variables X1, . . . , Xň.

If R is a coherent and exchangeable set of desirable gambles
on X N, then the representation of the two – because of sufficiency –
identical updated models he uses is

S cm̌ := MuHyn̂(Rcm̌).

This representation is not an updated model of the representation
S = MuHyN(R) of R. They are however related by

S cm = {g(m̌+ ·) : Lm̌g ∈S },

where we use the likelihood function, defined for every count vec-
tor m in N n by

Lm̌(m) :=
|[m̌]| |[m− m̌]|
|[m]|

,

which is zero when m 6≥ m̌.

Exchangeable previsions & representation

A lower prevision P on G (X N) is coherent and exchangeable iff
there is some coherent lower prevision Q on G (N N) – its count rep-
resentation – such that P = Q◦MuHyN. In that case Q is uniquely
determined by Q = P◦TN.
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General context: experiments & gambles

A finite possibility space Ω of outcomes of some experiment.

A subject who is uncertain about the experiment’s outcome.

Gambles f ∈ G (Ω) := RΩ , interpreted as uncertain rewards:
f (ω) when the experiment’s outcome is ω .

Ω := {ω,ω ′}

f

f (ω)

f (ω ′)

0
A gamble f is desirable to the subject if he
accepts the following transaction:

(i) the actual outcome ω is determined, and
(ii) the subject’s capital is changed by f (ω).

The zero gamble 0 is not desirable.

Coherent sets of desirable gambles

A subject’s set of desirable gambles R ⊆ G (Ω) models his beliefs
about the experiment’s outcome.

G +
0 (Ω)

G −(Ω)

The set of desirable gambles R is coherent
if it satisfies the following rationality require-
ments: ( f , f1, f2 ∈ G (Ω), λ > 0)
D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];

R RD4. if f1, f2 ∈R then f1 + f2 ∈R
[combination].

Requirements D3 and D4 make R
a cone: coni(R) = R.

Sets of weakly desirable gambles

The subject considers a gamble f in G (Ω) weakly desirable if
by adding any desirable gamble to it, another desirable gamble is
obtained; so if f ′ ∈R then f + f ′ ∈R.

The subject’s set of weakly desirable gambles is

DR := { f ∈ G (Ω) : f +R ⊆R}.

The set of weakly desirable gambles DR corresponding to a coher-
ent set of desirable gambles R satisfies the following properties:
( f , f1, f2 ∈ G (Ω), λ ≥ 0)
WD1. if f < 0 then f /∈DR [avoiding partial loss];
WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];

DR DR
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR

[combination].

DR is the closure of R, excluding
gambles in G −0 (Ω).

Assessments & their natural extension

An assessment can consist of a set A ⊆ G (Ω) considered desir-
able by the subject.

A E (A )AThe assessment A avoids non-positivity if the
intersection of coni(A ) and G −0 (Ω) is empty.

The natural extension of A is

E (A ) := coni
(
G +

0 (Ω)∪A
)
.

If A avoids non-positivity, then E (A ) is the smallest coherent set
of desirable gambles including A .

Updating sets of desirable gambles

The subject observes, or considers the possibility of observing, an
event B of Ω .

Contingent on observing B, the subject models his beliefs using an
updated set of desirable gambles, the subset of G (B) given by

RcB := { fB : IB f ∈R}.

If R is a coherent set of desirable gambles on Ω , then RcB is a
coherent set of desirable gambles on B.

Coherent previsions & desirability

The lower prevision of a gamble f associated to a set of desirable
gambles A is

PA ( f ) := sup{µ ∈ R : f −µ ∈A }.

Its conjugate upper prevision PA ( f )

f

PR( f )

f

PR( f )
is equal to −PA (− f ).

A lower prevision P is coherent if there
exists some coherent set of desirable
gambles R such that P = PR = PDR

.

Coherent lower previsions are less expressive uncertainty models
than coherent sets of desirable gambles.
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Specific context: finite sequences

The experiment consists of the observation of the value of a se-
quence X1, . . . , XN of random variables for which X is the finite set
of possible values. So the possibility

X := { , }, N := 3

x := ( , , )
space Ω is X N and x = (x1, . . . ,xN)
is one of its elements.

PN is the set of all permutations π of the index set {1, . . . ,N}.

The associated permutation of X N is defined by (πx)k = xπ(k).

It is lifted to a permutation π t of G (X N) by letting π t f = f ◦π .

With every sequence of observations corresponds a count vector in

N N = {m ∈ NX : ∑z∈X mz = N}.

The counting map T N: X N→N N maps T 3( , , ) = (1,2)
a sequence x to a vector m = T N(x).

Permuted sequences have the same count vector; a permutation
invariant atom is

[m] := {y ∈X N : T N(y) = m}.

[1,2] = {( , , ),( , , ),( , , )}

Exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this means
that for any gamble f and any permutation π , he finds exchanging
π t f for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

DPN := { f −π
t f : f ∈ G (X N) and π ∈PN}.

If DPN consists of weakly desirable gambles, then so does its con-
ical hull DUN = coni(DPN) = span(DPN).

A coherent set R of desirable gambles on X N is called exchange-
able if DUN ⊆DR, or equivalently, if

DUN +R ⊆R.

If R is coherent and exchangeable then it is also permutable: for
all f in R and all π in PN, it holds that π t f ∈R.

Exchangeable natural extension

The assessment A avoids non-positivity under exchangeability if
A +DUN avoids non-positivity.

The exchangeable natural extension of A is

E N
ex(A ) := DUN +E (A ).

If A avoids non-positivity under exchangeability, then E N
ex(A ) is the

smallest exchangeable coherent set of desirable gambles includ-
ing A .

Updating exchangeable models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count vec-
tor m̌ in N ň of the first ň variables X1, . . . , Xň; this means observing
the event {x̌}×X n̂ or [m̌]×X n̂. We are interested in inferences
about the remaining n̂ = N− ň variables.

Contingent on observing x̌ or m̌, the subject models his beliefs using
updated sets of desirable gambles, the subsets of G (X n̂) that are

Rcx̌ := { f (x̌, ·) : I{x̌}×X n̂ f ∈R},
Rcm̌ := { f (y̌, ·) : I[m̌]×X n̂ f ∈R and y̌ ∈ [m̌]}.

If R is a coherent and exchangeable set of desirable gambles
on X N, then Rcx̌ and Rcm̌ are coherent and exchangeable sets
of desirable gambles on X n̂.

Under exchangeability, count vectors are sufficient statistics:
if T ň(x̌) = m̌, then Rcx̌ = Rcm̌.

Exchangeable previsions

A lower prevision P on G (X N) is exchangeable if there is some ex-
changeable coherent set of desirable gambles R such that P = PR.
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Moving between sequence gambles and
count gambles

G (X N) GPN(X N)

G (N N)

exN

MuHyN TN

The set of permutation invariant sequence gambles is

GPN(X N) := { f ∈ G (X N) : (∀π ∈PN)π t f = f}.

The projection of a sequence gamble f onto a permutation invariant
sequence gamble is

exN( f ) := 1
N! ∑π∈PN

π t f = ∑m∈N N MuHyN( f |m)I[m],

where its value on an invariant atom [m] is given by

MuHyN( f |m) := 1
|[m]|∑y∈[m] f (y).

The count gamble corresponding to the sequence gamble f is

MuHyN( f ) := MuHyN( f |·).

The permutation invariant sequence gamble in a one-to-one corres-
pondence with the count gamble g is

TN(g) := g◦T N.

Representation

A set of desirable gambles R on X N is coherent and exchangeable
iff there is some coherent set S of desirable gambles on N N – its
count representation – such that

R = (MuHyN)−1(S ),

and in that case this S is uniquely determined by

S = {g ∈ G (N N) : TN(g) ∈R}= MuHyN(R).

Exchangeable natural extension &
representation

The assessment A ⊆X N avoids non-positivity under exchange-
ability if MuHyN(A ) avoids non-positivity.

A nice result: MuHyN(E N
ex(A )) = E (MuHyN(A )).

2G (X N) 2G (N N)

2G (X N) 2G (N N)

MuHyN

MuHyN

E N
ex E

Representing updated models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count
vector m̌ = T ň(x̌) in N ň of the first ň variables X1, . . . , Xň.

If R is a coherent and exchangeable set of desirable gambles
on X N, then the representation of the two – because of sufficiency –
identical updated models he uses is

S cm̌ := MuHyn̂(Rcm̌).

This representation is not an updated model of the representation
S = MuHyN(R) of R. They are however related by

S cm = {g(m̌+ ·) : Lm̌g ∈S },

where we use the likelihood function, defined for every count vec-
tor m in N n by

Lm̌(m) :=
|[m̌]| |[m− m̌]|
|[m]|

,

which is zero when m 6≥ m̌.

Exchangeable previsions & representation

A lower prevision P on G (X N) is coherent and exchangeable iff
there is some coherent lower prevision Q on G (N N) – its count rep-
resentation – such that P = Q◦MuHyN. In that case Q is uniquely
determined by Q = P◦TN.
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f (ω)
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(i) the actual outcome ω is determined, and
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Coherent sets of desirable gambles

A subject’s set of desirable gambles R ⊆ G (Ω) models his beliefs
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The set of desirable gambles R is coherent
if it satisfies the following rationality require-
ments: ( f , f1, f2 ∈ G (Ω), λ > 0)
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D2. if f > 0 then f ∈R [accepting partial gain];
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R RD4. if f1, f2 ∈R then f1 + f2 ∈R
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Requirements D3 and D4 make R
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( f , f1, f2 ∈ G (Ω), λ ≥ 0)
WD1. if f < 0 then f /∈DR [avoiding partial loss];
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gambles in G −0 (Ω).

Assessments & their natural extension
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The subject observes, or considers the possibility of observing, an
event B of Ω .
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Specific context: finite sequences

The experiment consists of the observation of the value of a se-
quence X1, . . . , XN of random variables for which X is the finite set
of possible values. So the possibility

X := { , }, N := 3

x := ( , , )
space Ω is X N and x = (x1, . . . ,xN)
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The associated permutation of X N is defined by (πx)k = xπ(k).

It is lifted to a permutation π t of G (X N) by letting π t f = f ◦π .

With every sequence of observations corresponds a count vector in

N N = {m ∈ NX : ∑z∈X mz = N}.

The counting map T N: X N→N N maps T 3( , , ) = (1,2)
a sequence x to a vector m = T N(x).

Permuted sequences have the same count vector; a permutation
invariant atom is

[m] := {y ∈X N : T N(y) = m}.
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Exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this means
that for any gamble f and any permutation π , he finds exchanging
π t f for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

DPN := { f −π
t f : f ∈ G (X N) and π ∈PN}.

If DPN consists of weakly desirable gambles, then so does its con-
ical hull DUN = coni(DPN) = span(DPN).

A coherent set R of desirable gambles on X N is called exchange-
able if DUN ⊆DR, or equivalently, if

DUN +R ⊆R.

If R is coherent and exchangeable then it is also permutable: for
all f in R and all π in PN, it holds that π t f ∈R.

Exchangeable natural extension

The assessment A avoids non-positivity under exchangeability if
A +DUN avoids non-positivity.

The exchangeable natural extension of A is

E N
ex(A ) := DUN +E (A ).

If A avoids non-positivity under exchangeability, then E N
ex(A ) is the

smallest exchangeable coherent set of desirable gambles includ-
ing A .

Updating exchangeable models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count vec-
tor m̌ in N ň of the first ň variables X1, . . . , Xň; this means observing
the event {x̌}×X n̂ or [m̌]×X n̂. We are interested in inferences
about the remaining n̂ = N− ň variables.
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If R is a coherent and exchangeable set of desirable gambles
on X N, then Rcx̌ and Rcm̌ are coherent and exchangeable sets
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Under exchangeability, count vectors are sufficient statistics:
if T ň(x̌) = m̌, then Rcx̌ = Rcm̌.

Exchangeable previsions

A lower prevision P on G (X N) is exchangeable if there is some ex-
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The set of permutation invariant sequence gambles is

GPN(X N) := { f ∈ G (X N) : (∀π ∈PN)π t f = f}.

The projection of a sequence gamble f onto a permutation invariant
sequence gamble is

exN( f ) := 1
N! ∑π∈PN

π t f = ∑m∈N N MuHyN( f |m)I[m],

where its value on an invariant atom [m] is given by

MuHyN( f |m) := 1
|[m]|∑y∈[m] f (y).

The count gamble corresponding to the sequence gamble f is

MuHyN( f ) := MuHyN( f |·).

The permutation invariant sequence gamble in a one-to-one corres-
pondence with the count gamble g is

TN(g) := g◦T N.

Representation

A set of desirable gambles R on X N is coherent and exchangeable
iff there is some coherent set S of desirable gambles on N N – its
count representation – such that

R = (MuHyN)−1(S ),

and in that case this S is uniquely determined by

S = {g ∈ G (N N) : TN(g) ∈R}= MuHyN(R).

Exchangeable natural extension &
representation

The assessment A ⊆X N avoids non-positivity under exchange-
ability if MuHyN(A ) avoids non-positivity.

A nice result: MuHyN(E N
ex(A )) = E (MuHyN(A )).
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Representing updated models

The subject observes the values x̌ = (x̌1, x̌2, . . . , x̌ň) or the count
vector m̌ = T ň(x̌) in N ň of the first ň variables X1, . . . , Xň.

If R is a coherent and exchangeable set of desirable gambles
on X N, then the representation of the two – because of sufficiency –
identical updated models he uses is

S cm̌ := MuHyn̂(Rcm̌).

This representation is not an updated model of the representation
S = MuHyN(R) of R. They are however related by

S cm = {g(m̌+ ·) : Lm̌g ∈S },

where we use the likelihood function, defined for every count vec-
tor m in N n by

Lm̌(m) :=
|[m̌]| |[m− m̌]|
|[m]|

,

which is zero when m 6≥ m̌.

Exchangeable previsions & representation

A lower prevision P on G (X N) is coherent and exchangeable iff
there is some coherent lower prevision Q on G (N N) – its count rep-
resentation – such that P = Q◦MuHyN. In that case Q is uniquely
determined by Q = P◦TN.
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