

notation

P: a prevision (expectation operator)f: a gamble (bounded real function)

variance notation

variance

the variance of f under P as an optimization problem $(f-\mu)^2$: a gamble for every μ

notation

envelopes

envelopes and a set

Lower & upper variance notation

variance of f under \underline{P} as optimization problems

Lower & upper variance

Walley's variance envelope theorem:

$$\underline{V}_{\underline{P}}f = \min_{P \in \mathcal{M}\underline{P}} V_P f \quad \text{ and } \quad \overline{V}_{\underline{P}}f = \max_{P \in \mathcal{M}\underline{P}} V_P f.$$

Lower & upper covariance

Erik Quaeghebeur

SMPS 2008

notation

covariance notation

the covariance $P((f - Pf) \cdot (g - Pg))$ of f and g under P $(Pf - \mu) \cdot (Pg - \nu) + C_P\{f, g\}$ $C_P\{f,g\}$

Pg

Pf

covariance

the covariance
$$P\big((f-\mu+\mu-Pf)\cdot(g-\nu+\nu-Pg)\big)$$
 of f and g under P

covariance

covariance

3.7

the credal set $\mathcal{M}\underline{P}$ has 4 extreme points $\overline{P}g$

the credal set $\mathcal{M}\underline{P}$ has 4 extreme points

envelopes

envelopes

envelopes and a set

envelopes and a set

Lower & upper covariance notation

Lower & upper covariance notation

Lower & upper covariance

Lower & upper covariance

Conclusion

We have found a definition of lower and upper covariance under coherent lower previsions that

- is direct, in the sense that it does not make use of the credal set of the lower prevision;
- and satisfies a covariance envelope theorem.

Moreover, it generalizes – as it should – the existing optimization problem definitions for covariance and (lower and upper) variance

Open questions

- ► Can this idea be extended to other, higher order central moments? In other words, can a definition be found for lower and upper versions of these moments under a coherent lower prevision that
 - is direct, in the sense that it does not make use of the credal set of the lower prevision;
 - and satisfies a higher order central moment envelope theorem?
- What is the (behavioral) meaning of an upper and lower covariance or, for that matter, lower and upper variance?