Immediate prediction under exchangeability & representation insensitivity

Gert de Cooman, Enrique Miranda & Erik Quaeghebeur

1 The setting

Systems of predictive lower previsions: The inferences and predictions of a predictive system family may depend on the actual choice of the model. So we let our subject consider predictive families for all conceivable choices of Φ. We collect families in a system \(\mathcal{C} \) of predictive lower previsions:

\[
\mathcal{C} = \{ \phi \mid \phi \text{ is a finite and non-empty set of } \}
\]

Immediate prediction: The subject in some way uses zero or more observations \(X_1, \ldots, X_n \) made previously (so \(X_1 \ldots, X_n \) belongs to \([0,1]\ldots, N))\) to predict, or make inferences about, the value of the next observation \(X_{n+1} \).

Families of predictive lower previsions: The subject can determine, beforehand, a finite and non-empty set \(\mathcal{C} \) of possible values, or categories, for the random variable. For each \(n \) and each sequence \(x = (x_1, \ldots, x_n) \in \mathcal{C} \), she can give a predictive lower prevision \(\mathcal{C}(x) \) for \(X_n \), given the values \(X_1, \ldots, X_n \). It is defined on the set of all gambles \(f \) on \(\mathcal{X} \).

\[
\mathcal{C}(x) = \{ \phi \mid \phi \text{ is a finite and non-empty set of } \}
\]

An \(\mathcal{C} \)-family \(\mathcal{C} \) of predictive lower previsions is the set formed for all possible observations:

\[
\mathcal{C} = \{ \phi \mid \phi \text{ is a finite and non-empty set of } \}
\]

Precise predictive families are those that only contain precise lower previsions. Predictive systems can be partially ordered: the system \(\Phi \) is more conservative than the system \(\Phi' \), if each predictive lower prevision \(\mathcal{C}(x) \) in \(\Phi' \) is point-wise dominated by the corresponding predictive lower prevision \(\mathcal{C}(x) \) in \(\Phi \).

\[
\mathcal{C}(x) = \{ \phi \mid \phi \text{ is a finite and non-empty set of } \}
\]

A collection \(\{ \mathcal{C}(x) \} \) of predictive lower previsions may have an infimum with respect to this partial order. Whenever it exists, this infimum system \(\Phi \) can be seen as a lower envelope: the lower probability of its predictive lower previsions \(\mathcal{C}(x) \) is defined as the lower envelope \(\inf \{ \mathcal{C}(x) \mid x \in \mathcal{X} \} \) of the predictive lower previsions in the predictive system \(\mathcal{C} \).

Selected references

