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Abstract

We discuss two approaches for choosing a strategy in a two-player game. We
suppose that the game is played a large number of rounds, which allows the
players to use observations of past play to guide them in choosing a strategy.

Central in these approaches is the way the opponent’s next strategy is
assessed; both a precise and an imprecise Dirichlet model are used. The ob-
servations of the opponent’s past strategies can then be used to update the
model and obtain new assessments. To some extent, the imprecise probabil-
ity approach allows us to avoid making arbitrary initial assessments.

To be able to choose a strategy, the assessment of the opponent’s strategy
is combined with rules for selecting an optimal response to it: a so-called
best response or a maximin strategy. Together with the updating procedure,
this allows us to choose strategies for all the rounds of the game.

The resulting playing sequence can then be analysed to investigate if the
strategy choices can converge to equilibria.
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1 Introduction
In [4] and [5], Fudenberg et al. have proved a number of convergence results con-
cerning methods for learning optimal strategies in a game-theoretic context. They
show that these results hold in particular for fictitious play in strictly competitive
two-player games in strategic form. In this context, a player bases his learning
method on the assumption that his opponent uses a fixed, but unknown, mixed
strategy. The pure strategies that his opponent actually plays are consequently
assumed to be iid observations of the random multinomial process that has this
mixed strategy as its probability mass function. The player then uses a Bayesian
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statistical updating scheme, where the prior is chosen from among a class of mod-
els that is conjugate with the multinomial likelihood function, namely the Dirich-
let priors, mainly because such a choice allows for simple updating rules.

In the present work, we investigate how this learning method is influenced by
replacing the Dirichlet priors by so-called imprecise Dirichlet priors, first intro-
duced by Walley [9], and we provide generalisations for Fudenberg’s convergence
results that can be applied to the new learning method.

1.1 The Game
We consider strictly competitive two-player games in the strategic form; [3, Chap-
ter 2], [5, Chapter 1]. One player is denoted by i and his opponent by −i, where
i ∈ {−1,1}.

Player i has a finite set Si = {1, . . . ,N i} of pure strategies si. After each round
of the game, he receives a (possibly negative) pay-off ui(si,s−i), with si ∈ Si and
s−i ∈ S−i. This pay-off is assumed to be expressed in units of some predetermined
linear utility, e.g. probability currency; [7, Sections 13 and 14], [8, Section 2.2.2].

Instead of choosing a pure strategy, player i can also choose a so-called mixed
strategy σi, which is a probability mass function on the set Si. This amounts to
using a randomisation device that chooses a pure strategy from Si, with the prob-
abilities for each pure strategy defined by the mixed strategy σi. These can be
written as a vector of length N i with ∑si σi(si) = 1. We denote the set of these
mixed strategies by Σi. In what follows, unless otherwise indicated, si will always
be an element of Si and σi will always be an element of Σi.

When using mixed strategies, only the expected pay-off can be calculated,

ui(σi,σ−i) = ∑
si∈Si

∑
s−i∈S−i

ui(si,s−i)σi(si)σ−i(s−i). (1)

It should be clear that pure strategies can be considered as border-case, or degen-
erate, mixed strategies. The set of all mixed strategies Σ−i can be represented as
the unit simplex in RN−i

. Pure strategies correspond to the vertices of the simplex.
The distance between two strategies is measured using the sup-norm,1

d(σ−i,τ−i) = sups−i∈S−i |σ−i(s−i)− τ−i(s−i)|.

Observe that the convex unit simplex is compact under this norm.

1.2 Our Objective
We wish to formulate a procedure that guides the players in their strategy choices
in such a way, that, using the information they have at their disposal, their ex-
pected pay-off is in some sense optimal.

1This allows for a nice interpretation, but any norm generating the usual topology could be used.
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2 Assessing the Opponent’s Strategy
It is essential that the information player i has about the strategy σ−i that his
opponent will play, is modelled in a manner that is useful, in light of the objective
above, for choosing a strategy σi in response to σ−i. In this section we describe
two uncertainty models for representing such information. The first is a precise
probability model, the second is imprecise.

2.1 Gambles
The available information about his opponent’s strategy σ−i will lead player i to
accept or reject gambles whose outcome depends on σ−i. Both the uncertainty
models described later intend to model player i’s behavioural dispositions toward
such gambles. A gamble X on Σ−i is a bounded real-valued map on Σ−i. It rep-
resents an uncertain reward: it yields the amount X(σ−i) if player −i decides to
play the mixed strategy σ−i. The set of all gambles on Σ−i is denoted by L(Σ−i);
[8, Section 1.5.6]. Two types of gambles are of special interest.

If player i decides to play strategy σi, then the game will result in an ex-
pected pay-off that still depends on the strategy σ−i that his opponent will play.
Thus, we can associate the strategy gamble Xσi on Σ−i with this strategy σi by
defining Xσi(σ−i) = ui(σi,σ−i) for all σ−i in Σ−i. It represents the uncertain ex-
pected pay-off for player i if he chooses strategy σi. Every gamble in the subset
K i = {Xσi : σi ∈ Σi} of L(Σ−i) is thus an uncertain expected pay-off. The distance
between two strategy gambles is measured using the sup-norm,

d(Xσi ,Xτi) = sup
σ−i∈Σ−i

|Xσi(σ−i)−Xτi(σ−i)|.

Proposition 1 The set of strategy gambles K i is convex and compact under the
sup-norm topology on Σ−i.

Another type of gamble on Σ−i, specifically associated with a pure strategy
s−i, is the evaluation gamble Ys−i : Σ−i → [0,1] defined by Ys−i(σ−i) = σ−i(s−i).
This definition implies that ∑s−i Ys−i = 1. Each of these gambles yields the un-
known probability mass of the pure strategy s−i defined by (the unknown) prob-
ability mass function σ−i. Using this notation, the vector Y−i = (Y1, . . . ,YN−i) of
evaluation gambles returns to the unknown mixed strategy σ−i = Y−i(σ−i) itself.

Using Eq. (1), it is possible to write each strategy gamble as a linear combi-
nation of evaluation gambles,

Xσi = ∑
s−i∈S−i

(
∑

si∈Si

ui(si,s−i)σi(si)

)
Ys−i . (2)
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2.2 The Precise Dirichlet Model
First we consider a model that specifies the information available to player i as
a linear prevision P on some subset of L(Σ−i); [2, Chapter 3], [8, Section 2.8].
P(X) is player i’s fair price, or prevision, for the gamble X , i.e., the unique real
number such that he is disposed to buy the gamble X for all prices p < P(X) and
to sell X for all prices p > P(X).

If we define πP = P(Y−i) = (P(Y1), . . . ,P(YN−i)), then the properties of linear
previsions allow us to conclude that ∑s−i πP(s−i) = 1 and 0 ≤ πP(s−i) ≤ 1. We
see that πP is a possible mixed strategy for the opponent. It is player i’s prevision
of the strategy that his opponent will play. Using Eq. (2) and the linearity of the
operator P, we can write for the prevision of the strategy gamble Xσi :

P(Xσi) = ∑
s−i∈S−i

(
∑

si∈Si

ui(si,s−i)σi(si)

)
πP(s−i) = Xσi(πP), (3)

i.e., the expected pay-off if the opponent were actually to play strategy πP.
The linear prevision P we shall use here is a precise Dirichlet model (PDM)

P(· | βt ,ρt), where βt > 0 and ρt is a mixed strategy in the interior int(Σ−i) of Σ−i,
i.e., ρt(s−i) > 0 for all s−i ∈ S−i. This PDM is defined for all measurable gambles
X on Σ−i by

P(X | βt ,ρt) =
1

B(βt ,ρt)

Z

Σ−i
X(σ−i) f (σ−i | βt ,ρt)dσ−i, (4)

where f and the normalisation constant B define the parametrised2 Dirichlet prob-
ability density function,

f (σ−i | βt ,ρt) = ∏
s−i∈S−i

σ−i(s−i)βt ρt(s−i)−1 and B(βt ,ρt) =
∏s−i Γ(βt ρt(s−i))

Γ(βt)
.

When using such a PDM, the prevision πP of the strategy his opponent will play
coincides with ρt :

πP = πP(·|βt ,ρt) = P(Y−i | βt ,ρt) = ρt .

This means that for the calculation of P(Xσi | βt ,ρt) we don’t need to use Eq. (4),
but that we can use Eq. (3), replacing πP by ρt :

P(Xσi | βt ,ρt) = ∑
s−i∈S−i

(
∑

si∈Si

ui(si,s−i)σi(si)

)
ρt(s−i) = Xσi(ρt).

2We use a non-standard parametrisation, because it is more convenient in this context; [9].
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2.3 The Imprecise Dirichlet Model
Next, we consider an imprecise probability model for the information player i
has about his opponent’s strategy. This can always be made to take the form of
a coherent lower prevision P on some subset of L(Σ−i); [8, Section 2.3]. P(X)
specifies player i’s supremum acceptable price for buying the gamble X , i.e., it is
the greatest real number p such that he is disposed to buying the gamble X for all
prices strictly smaller than p.

The lower prevision P we shall use here is an imprecise Dirichlet model (IDM)
P(· | βt ,Mt ), where βt > 0 and Mt ⊆ int(Σ−i); [9]. This IDM is defined for all
measurable gambles X on Σ−i as the lower envelope of a set of PDM’s (with a
common βt , but each with their own ρt),

P(X | βt ,Mt) = inf{P(X | βt ,ρt) : ρt ∈Mt ⊂ Σ−i}. (5)

3 Choosing an Optimal Strategy
When choosing an optimal strategy, it is important to be clear on what defines
optimality. In this game-theoretic context, it is desirable to attain a pay-off that
is as high as possible, but on the other hand it may also be important to limit
possible losses. These are the guiding criteria in our search for optimal strategies
[6, Section 3.8].

3.1 Admissible Strategies, Maximin Strategies, Best Replies
If for two strategies τi and σi, the pay-off for τi is always at least as high as that
for σi, i.e., Xτi ≥ Xσi or in other words (∀σ−i ∈ Σ−i)(Xτi(σ−i) ≥ Xσi(σ−i)), we
say that τi dominates σi—or that Xτi dominates Xσi ; [5, Section 1.7.2].

A strategy σi ∈ Σi, or its corresponding strategy gamble Xσi ∈ K i, is called
inadmissible if there is another strategy τi that strictly dominates it: Xτi ≥ Xσi and
Xσi 6= Xτi . Otherwise, it is called admissible. We consider an admissible strategy
to be more optimal than an inadmissible strategy. However, the discussion of, and
the results deduced for, the learning models below is not essentially affected when
this distinction is not made.

Now suppose that player i knows that his opponent will play some strategy in
M ⊆ Σ−i, but nothing more. When playing σi, his expected pay-off will at least
be infσ−i∈M Xσi(σ−i). An M-maximin strategy τi maximises this minimal pay-off:

τi ∈ argmax
σi∈Σi

inf
σ−i∈M

Xσi(σ−i).

Proposition 2 There are admissible M-maximin strategies for any compact sub-
set M of Σ−i.
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When M = Σ−i, player i doesn’t have a clue about his opponent’s strategy choice,
and the corresponding Σ−i-maximin strategy is simply called a maximin strategy.

Corollary 1 There are always admissible maximin strategies.

At the other extreme, player i knows his opponent will play a strategy σ−i. Any
corresponding {σ−i}-maximin strategy is called a best reply to σ−i. The set of all
best replies to σ−i is denoted by BRi(σ−i).

Corollary 2 There are always admissible best replies to any strategy σ−i in Σ−i.

This set of best replies has some interesting properties.

Proposition 3 For all σ−i in Σ−i, BRi(σ−i) is a compact and convex subset of Σi.
Moreover, if σi ∈ BRi(σ−i) and σi(si) > 0 for some si ∈ Si, then si ∈ BRi(σ−i).

For M ⊆ Σ−i, the collection of best replies to strategies in M is denoted by
BRi(M) and given by

BRi(M) =
[

σ−i∈M

BRi(σ−i).

Proposition 4 For any subset M of Σ−i that is convex and closed, the M-maximin
strategies make up a subset of BRi(M).

Corollary 3 There are always admissible best replies to any convex and closed
subset M of Σ−i.

3.2 Optimal Strategies and the PDM
When using a linear prevision P, any admissible strategy σi that maximises P(Xσi)
is called a Bayes strategy. This name refers to the fact that it is an optimal strategy
in the usual Bayesian sense of maximising expected utility; [8, Section 3.9].

Eq. (3) tells us that P(Xσi) = Xσi(πP). This means that τi is a Bayes strategy
whenever τi ∈ argmaxσi Xσi(πP). This gives the following result.

Proposition 5 The set of the Bayes strategies corresponding to a linear prevision
P is given by the admissible strategies of BRi(πP).

If player i’s model for his opponent’s strategy is a PDM P(· | βt ,ρt), we find
that his optimal (Bayes) strategies are simply the admissible strategies of BRi(ρt).

3.3 Optimal Strategies and the IDM
When using a coherent lower prevision P, a maximal strategy is any admissible
strategy σi for which minτi∈Σi P(Xσi −Xτi) ≥ 0; see [8, Section 3.9] for motiva-
tion.3

3To see that this definition generalises that of a Bayes strategy, consider that

σi ∈ argmax
τi∈Σi

P(Xτi)⇔ P(Xσi)≥ max
τi∈Σi

P(Xτi)⇔ min
τi∈Σi

P(Xσi −Xτi)≥ 0.
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We shall use the notation M (P) for the set of linear previsions P that dominate
P on its domain.

Proposition 6 A strategy σi is maximal under P

⇔ σi is a Bayes strategy under some P in M (P);

⇔ σi is an admissible best reply to πP for some P ∈M (P), i.e., the admissible
σi ∈ BRi(MP), where MP = {πP : P ∈M (P)} ⊆ Σi.

Corollary 4 There are maximal strategies under P.

There is another optimality criterion associated with a lower prevision P: an
admissible mixed strategy σi is called P-maximin if it maximises the lower pre-
vision P(Xτi) of all strategy gambles Xτi , i.e., if σi ∈ argmaxτi∈Σi P(Xτi); [8, Sec-
tion 3.9]. Since a coherent lower prevision P is the lower envelope of its set of
dominating linear previsions (see [8, Theorem 3.3.3]), we see that

P(Xτi) = min
P∈M (P)

P(Xτi) = min
σ−i∈MP

Xτi(σ−i),

and consequently, the admissible mixed strategy σi is P-maximin if and only if
σi ∈ argmaxτi∈Σi minσ−i∈MP

Xτi(σ−i), i.e., if it is MP-maximin. We know from
Section 3.1 that all the MP-maximin strategies also belong to BRi(MP).

Corollary 5 For any coherent lower prevision P, there are P-maximin strategies.
They coincide with the admissible MP-maximin strategies, and are in particular
also maximal strategies under P.

If player i models his uncertainty about his opponent’s strategy by an IDM
P(· | βt ,Mt ), we have proved the following results, using the continuity of Y−i

and the properties of M (P(· | βt ,Mt)).

Theorem 1 If Mt is a subset of int(Σ−i), then the set MP(·|βt ,Mt ) is the closed
convex hull co(Mt ) of Mt .

We thus find that the optimal strategies in this imprecise model are the admissible
elements of BRi(co(Mt)). Moreover, if player i wants to play it safe (maximise his
minimal expected gains), he can use admissible co(Mt)-maximin strategies.

4 Playing the Game Over and Over Again
We now turn our attention to how the proposed models, the PDM and the IDM,
can be used when a number of rounds of the game are played. We specifically
look at the way observations of past play can change the assessments of a player
and we formulate an algorithm to guide the players in their strategy choices.
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4.1 Learning from Past Play
After playing t rounds of the game, player i has observed a so-called history
ζ−i

t ∈ Z−i
t = (S−i)t of the pure strategies ζ−i

t (k), k = 1, . . . , t, that his opponent
has played.

If player i supposes that his opponent plays a fixed mixed strategy σ−i,4 which
is of course not necessarily the case, the order of the strategies in the history
does not matter and the observed strategies can be considered as outcomes of
a multinomial iid process. As a sufficient statistic for σ−i he can then use the
N−i-tuple n−i of observed occurrences for which each component n−i(s−i) is the
number of times his opponent has played s−i ∈ S−i, and which is consequently a
random variable with the multinomial distribution. The total number t of rounds
played is also equal to ∑s−i n−i(s−i). The N−i-tuple of observed frequencies n−i

t
is denoted by κ−i

t and can be considered to be an element of Σ−i.
The likelihood function for n−i is

Ln−i(σ−i) =
t!

∏s−i n−i(s−i)! ∏
s−i∈S−i

σ−i(s−i)n−i(s−i).

Using Bayes’ rule, we can now update (see e.g. [5, Chapter 2]) a prior Dirichlet
density function f (σ−i | β0,ρ0) with the observations n−i,

f (σ−i | β0,ρ0,n−i) =
1

P(Ln−i | β0,ρ0)
f (σ−i | β0,ρ0)Ln−i(σ−i)

= f (σ−i | β0 + t,
β0ρ0 +n−i

β0 + t
)

= f (σ−i | βt ,ρt).

We see that the posterior density function f (σ−i | βt ,ρt) is still a Dirichlet density
function. This means that that the Dirichlet density functions constitute a conju-
gate family of density functions for the multinomial sampling likelihood function
Ln−i . Observe that P(Ln−i | β0,ρ0) has to be non-zero, which is guaranteed by
β0 > 0 and ρ0 ∈ int(Σ−i).

4.2 Updating a Dirichlet model
When updating a prior PDM P(· | β0,ρ0) after t rounds, we find that we simply
have to update the parameters,

β0→ βt = β0 + t and ρ0→ ρt =
β0ρ0 +n−i

β0 + t
, (6)

4This corresponds to the underlying assumption used in so-called fictitious play; [5, Chapter 2].
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to obtain the posterior PDM P(· | βt ,ρt). It is clear that first updating with n−i

and then updating the new model with m−i is equivalent to updating the original
model with n−i +m−i.

When updating a prior IDM P(· | β0,M0) after t rounds, the answer is a bit
more complicated. It is possible that there are n−i for which P(Ln−i | β0,M0) = 0
even with M0⊆ int(Σ−i), i.e., for P(Ln−i | β0,M0) > 0 we need P(Ln−i | β0,ρ0) > 0
for all ρ0 ∈ co(M0). However, using the notion of regular extension, we can find
a unique posterior IDM that is coherent with P(· | β0,M0) and that satisfies the
additional rationality axiom of regularity; [8, Appendix J]. This posterior lower
prevision turns out to be the lower envelope of the updated PDM’s,

inf
ρ0∈M0

P(X | β0 + t,
β0ρ0 +n−i

β0 + t
) = inf

ρt∈Mt
P(X | βt ,ρt) = P(X | βt ,Mt),

where βt and Mt are the parameters of the updated IDM,

β0→ βt = β0 + t and M0→Mt = {β0ρ0 +n−i

β0 + t
: ρ0 ∈M0}. (7)

4.3 Iterative Playing Algorithm: Assess, Decide and Update
Our generic guiding algorithm for player i playing multiple rounds of a strictly
competitive two-player game consists of three steps; [4, Section 3]. Assume that
t rounds have already been played, and that the history ζ−i

t of the pure strategies
played by the opponent during these rounds is available to player i. He is about to
play a new round and uses some model to describe the information he has.

1. Player i has to make an assessment µi(ζ−i
t ) about the data that are relevant

for his strategy choice: to this end, he uses an assessment rule µi.

2. Player i has to use a decision rule φi to choose a strategy φi(ζ−i
t ) to play,

using his assessments µi(ζ−i
t ).

3. After the round is played, player i should use the observation of his oppo-
nent’s strategy to update his information.

Let us now see what this algorithm becomes for the two types of uncertainty
models described above.

When using a PDM P(· | βt ,ρt), we can formulate the following implementa-
tion of the algorithm.

1. Let µi(ζ−i
t ) = ρt = πP(·|βt ,ρt), the prevision of the opponent’s strategy.

2. Let φi(ζ−i
t ) be some (admissible) element of BRi(ρt).

3. Update the PDM to P(· | βt+1,ρt+1) using Eq. (6).
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Initially, player i has to choose a ρ0 and β0. The parameter β0 can be interpreted
as the number of pseudocounts5 associated with the initial prevision of his oppo-
nent’s strategy ρ0, for which any choice is arbitrary (if it is not based on some
information).

When using an IDM P(· | βt ,Mt), we can formulate two different implemen-
tations of the algorithm, different only in their choice of behaviour rule.

1. Let µi(ζ−i
t ) = co(Mt) = MP(·|βt ,Mt).

2. (a) If we consider maximality as the optimality criterion, then let φi(ζ−i
t )

be some (admissible) element of BRi(co(Mt )).

(b) If we consider maximinity as the optimality criterion, then let φi(ζ−i
t )

be some (admissible) co(Mt)-maximin strategy.

3. Update the IDM to P(· | βt+1,Mt+1) using Eq. (7).

Initially, player i has to choose an M0 and a number of pseudocounts β0. When
he has no information available, an obvious choice for M0 is int(Σ−i), which cor-
responds to so-called near-ignorance [8, Section 4.6.9]. The choice for the best
reply behaviour rule or the maximin behaviour rule will not influence the results
of Section 5 in any way.

5 Equilibria and Convergence
Now that we have two learning models, the PDM and the IDM, at our disposal,
we can investigate the game-play that results from using them. We start by giving
some definitions that are essential for the ensuing analysis.

5.1 Strategy Profiles and Equilibria
To be able to analyse the game-play that results from the assessment and be-
haviour rules discussed in Section 4.3, we introduce some new notation and recall
the concept of an equilibrium.

A couple of strategies of the players is called a strategy profile, which can
be pure s = (si,s−i) ∈ S = Si× S−i, or mixed σ = (σi,σ−i) ∈ Σ = Σi×Σ−i. A
corresponding profile history after t rounds of play is denoted by ζt ∈ Zt = St .

The notation σ(s) corresponds to (σi(si),σ−i(s−i)). Likewise, we write

BR(σ) = BRi(σ−i)×BR−i(σi)⊆ Σ,

µ(ζt) = µi(ζ−i
t )×µ−i(ζi

t)⊆ Σ,

φ(ζt) = (φi(ζ−i
t ),φ−i(ζi

t)) ∈ Σ.

5In the literature, the values 1 and 2 are found for prior models that are not based on any informa-
tion; [9].
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An equilibrium is a strategy profile for which the pay-off for both players
cannot be increased if one of them changes his strategy, while his opponent’s
strategy remains unchanged; [3]. This means that

σ∗ is an equilibrium ⇔ (∀i)
(

ui(σ∗) = max
τi∈Σi

ui(τi,σ−i
∗ )
)
⇔ σ∗ ∈ BR(σ∗).

If s∗ = BR(s∗), then s∗ is a strict equilibrium.6 A game can have multiple (strict)
equilibria.7

5.2 Assessment Rules
The definitions in this section and in the next are generalisations of the definitions
given by Fudenberg and Kreps in [4] to learning models with assessments µi(ζ−i

t )
that are set-valued rather than point-valued.

An important characterisation of possible assessment rules can be made by
looking at what the influence is of different parts of a history.

We say that a assessment rule µi is adaptive if it attaches diminishing im-
portance to earlier parts of the history, as the number of rounds t increases. This
means that for all t and all ε > 0,

(∃T > t)
(
∀t ′ > T − t

)(
∀ζ−i

t+t′ ∈ Z−i
t+t′
)(
∀σi ∈ µi(ζ−i

t+t′)
)(

σi(si) < ε
)
,

for every pure strategy si that was not played in the last t ′ rounds (did not appear
in the t ′ last components of ζ−i

t+t′ ).
A specific subcategory of the adaptive assessment rules can be defined using

the observed frequencies κ−i
t of strategies played by the opponent. An assessment

rule µi is called asymptotically empirical if for every infinite history ζ−i
∞ ∈ Z−i

∞ it
holds that limt→∞ supσ−i∈µi(ζ−i

t ) d(σ−i,κ−i
t ) = 0, where the ζ−i

t are partial histories
of the selected infinite history ζ−i

∞ .
Using the updating formulae (6) and (7), we obtain the following result.

Theorem 2 The assessment rules of the PDM and the IDM are asymptotically
empirical, and thus adaptive.

5.3 Behaviour Rules
It is clear that the behaviour rules φ determine which histories are possible. A his-
tory is called compatible with the behaviour rules φ used by the players if it can
be generated (with non-zero probability) by these behaviour rules. Explicitly, this

6By Proposition 3, only pure strategy profiles can be strict equilibria.
7When only admissible strategies are considered optimal, some equilibria might not be playable.

There is always at least one admissible equilibrium.
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means that for every pure profile ζt(k), k = 1, . . . , t, that is a component of a com-
patible profile history, both components of φ(ζk−1)(ζt(k)) are strictly positive, so
the randomisation devices used by the players can select the pure strategies ζi

t(k)
and ζ−i

t (k) with non-zero probability.
It is useful to know to what degree the behaviour rules φ used by the players

succeed in attaining the objective of optimality (see Section 1.2). The characteri-
sations in this section do just this, and give a clear interpretation of this objective,
keeping in mind that the players suppose that their opponent plays an unknown,
but fixed, mixed strategy.

We call a behaviour rule φi set-myopic relative to the assessment rule µi if, for
all t and histories ζ−i

t , it holds that φi(ζ−i
t ) ∈ BRi(µi(ζ−i

t )). When the assessments
µi(ζ−i

t ) are point-valued, the prefix ‘set’ in set-myopic is dropped.
We now define a weakening of the notion of a set-myopic behaviour rule. We

call a behaviour rule φi strongly asymptotically set-myopic relative to the assess-
ment rule µi if, for some sequence εt > 0 with limt→∞ εt = 0 and for all t and
histories ζ−i

t , it holds that
(
∀σ−i ∈ µi(ζ−i

t )
)(
∀s̃i ∈ Si such that φi(ζ−i

t )(s̃i) > 0
)

(
ui(s̃i,σ−i)+ εt ≥max

si∈Si
ui(si,σ−i)

)
.

Using the definitions from Section 4.3 the next result is immediate.

Theorem 3 The behaviour rules for the IDM are set-myopic and the behaviour
rule for the PDM is myopic.

5.4 Convergence to equilibria
An interesting theorem about strict equilibria follows directly from the definitions
of a strict equilibrium and of a myopic behaviour rule; [4].

Theorem 4 (absorption to a strict equilibrium) If there is a strict equilibrium
s∗ that is played in some round t of a profile history ζt compatible with a myopic
behaviour rule φ, then s∗ will be played during all subsequent rounds t ′ > t.

This theorem holds for the PDM (with myopic behaviour rules), due to Theo-
rem 3, but not for the IDM (with set-myopic behaviour rules), because we have
been able to show that the selected mixed strategy φi(ζ−i

t ) under both optimisation
criteria can still be different from si

∗ due to the fact that µi(ζ−i
t ) = co(Mt) is a set.

It is possible to tighten the conditions, to obtain a result that also works for the
IDM, i.e., to make sure that best reply only contains s∗.

Theorem 5 (conditional absorption to a strict equilibrium) If, for some profile
history ζt compatible with set-myopic behaviour rules φ, the strategy profile φ(ζt)
cannot be different from the strict equilibrium s∗, then s∗ will be played during all
subsequent rounds t ′ > t.
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For equilibria s∗ of pure strategies that aren’t necessarily strict, the following
result is found.

Theorem 6 (repeated play of a pure strategy profile) Consider an infinite his-
tory ζ∞ in Z∞ such that for some t, a pure strategy profile s∗ is played in all
subsequent rounds. If ζ∞ is compatible with behaviour rules φ that are strongly
asymptotically set-myopic relative to the adaptive assessment rules µ, then s∗ is
an equilibrium.

This theorem can be used for both the PDM and the IDM, due to Theorems 2 and
3, even if both players don’t use the same model. For example, one player can use
the IDM and his opponent the PDM, or two players can use the IDM, each using
a different optimality criterion.

For mixed equilibria σ∗, the following result about the convergence of the
observed game-play to a mixed equilibrium, is found.

Theorem 7 (repeated play of a mixed strategy profile) Let the infinite history
ζ∞ in Z∞ be such that for some mixed strategy profile σ∗, it holds that for both
players i ∈ {−1,1}

lim
t→∞

κ−i
t = σ−i

∗ .

If the infinite history ζ∞ is compatible with behaviour rules φ that are strongly
asymptotically set-myopic relative to the assessment rules µ that are asymptoti-
cally empirical, then σ∗ is an equilibrium.

As before, due to Theorems 2 and 3, this theorem can be used for both the PDM
and the IDM.

Theorems 6 and 7 can only say that convergence has occurred, but do not
indicate when convergence will occur. They could be useful for finding equilibria
in large games. As these theorems are generalisations to set-valued assessment
rules of theorems found in [4], their proofs are (not always trivial) modifications
of the ones found there.

6 Conclusions

6.1 General Remarks
Both the learning models discussed above accomplish our objective of optimality
of the expected pay-off quite well. Their convergence properties also favour their
use in game theory, notably in the search for equilibria.

The PDM has already been studied in the literature and the learning model
based on it is often called fictitious play in a game-theoretic setting. The IDM has
also been used in different contexts; see [9] for the presentation of the IDM itself
and [1], [10], [11] and [12] for examples of possible applications in other areas.
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In Section 5 we have in fact generalised the results of Fudenberg and Kreps
in [4, Sections 3 and 4], where point-valued assessments µi(ζ−i

t ) are used, to set-
valued assessments. This is why we formulated Theorems 6 and 7 for a broader
class of learning models than our Dirichlet models, which allows Section 5 to be
seen as a generalisation of [4, Sections 3 and 4], and not only as a group of results
for the PDM and IDM.

We haven’t discussed the choice of a specific strategy φi(ζ−i
t ) from among

the optimal ones. But, if for a specific application other, additional, criteria are
available, then using them at this stage will not influence the convergence results
in any way.

6.2 PDM vs. IDM
If we compare the PDM to the IDM, the first thing to be said is that the PDM is a
special case of the IDM, where M0 = {ρ0}. This immediately indicates the most
important advantage of the IDM over the PDM, the possibility of not having to
make an arbitrary initial choice, as there is no need to choose one specific prior.

The second advantage of the learning model using the IDM is that it reflects,
in its assessment µi(ζ−i

t ), the amount of information on which it is based. This
corresponds to the fact that the distances between elements of Mt shrink with
increasing t. So the model becomes more precise as more observations come in,
in the sense that all elements of Mt will lie closer and closer to the ρt of any PDM
that could have been used.8

One disadvantage of the IDM is that it is a more complex model (the player
has to work with sets of strategies instead of one strategy). This difference could
be reflected by the calculation load for both models.
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