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The problem of overconfidence

In this talk I will give an example of a situation mentioned by
Erik in his first email about this workshop:

Bayesian approaches lead to overconfidence in
decision making and non-Bayesian approaches to
remedying this.

One of the non-Bayesian approaches is just to calibrate the
probabilities coming from a Bayesian approach.
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Overconfident predictors

Examples of overconfident predictors:
people (can be trained)
Bayesian algorithms when their assumptions are violated
“almost Bayesian” algorithms (e.g., based on a narrow
statistical model), again when their assumptions are
violated

It is an empirical fact that overconfidence is much more
common than underconfidence.
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A toy experiment: naive Bayes (1)

We consider naive Bayes with binary labels, a training set of
size l , and a test set of size n, with p = 5 attributes.

Generate the training and test labels y1, . . . , yl+n from the
Bernoulli distribution with parameter 1/2 (independently,
here and in what follows).
Generate the noise random variables η1, . . . , ηl+n from the
p-dimensional Gaussian distribution with

E(η) = 0, cov(ηq, ηq′
) =

{
1 if q = q′

ρ if not.

For each i = 1, . . . , l + n set

xi :=

{
(1,1) + ηi if yi = 1
(−1,−1) + ηi if yi = 0.
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A toy experiment: naive Bayes (2)

For all q = 1, . . . ,p and for y = 0,1, estimate

θ̂q
y :=

∑
i:yi=y xq

i

|{i | yi = y}|
.

For each test object xj , j = l + 1, . . . , l + n, predict

pj :=
exp

(
−1

2
∑p

q=1(xq
j − θ̂

q
1)2
)

∑1
y=0 exp

(
−1

2
∑p

q=1(xq
j − θ̂

q
y )2
) .

Run isotonic regression on (pj , yj), j = l + 1, . . . , l + n. The
resulting calibration curve (pj , ȳj), j = l + 1, . . . , l + n, where
ȳl+1 ≤ · · · ≤ ȳl+n, should be close to the diagonal if ρ = 0.
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Calibration curve (blue) for ρ = 0 (left) and ρ = 0.5
(right); l = n = 106 and p = 5
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This talk

For simplicity: only binary classification in this talk (two
labels, 0 and 1; P 7→ p := P({1})).
Most binary classification algorithms are “scoring
algorithms” (output not only a prediction but also a score,
the algorithm’s “confidence” that the label is 1).
We will be interested in “calibrating” the scores into
probabilities.
I will describe the traditional methods and a new method
with validity guarantees.
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Data

We consider observations z = (x , y) consisting of two
components:

an object x ∈ X
and its label y ∈ Y := {0,1} (i.e., we consider the binary
case);

X is a measurable space, and so is Z := X× Y = X× {0,1}.
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Scoring classifiers

Many binary classification algorithms are in fact scoring
classifiers:

When trained on a training set of observations and fed with
a test object x , they output a prediction score s(x).
We will call s : X→ R the scoring function for that training
set.
The actual classification algorithm is obtained by fixing a
threshold c and predicting the label of x to be 1 if and only
if s(x) ≥ c (or if and only if s(x) > c).
Alternatively, one could apply an increasing function g to
s(x) in an attempt to “calibrate” the prediction scores, so
that g(s(x)) can be used as the predicted probability that
the label of x is 1.
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Platt’s method (1)

Platt’s (1999) method uses sigmoids

g(s) :=
1

1 + exp(As + B)
,

where A < 0 and B are parameters.
Platt discusses two approaches:

run the scoring algorithm and fit the parameters A and B on
the full training set
or run the scoring algorithm on a subset (I will call it the
proper training set) and fit A and B on the rest (the
calibration set).

Platt recommends the second approach (especially that he
is interested in SVM, and so s tend to cluster around ±1).
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Platt’s method (2)

Platt’s recommended method of fitting A and B:

−
k∑

i=1

(
ti log pi + (1− ti) log(1− pi)

)
→ min

where, in the simplest case, ti := yi are the labels
(minimizing the log loss on the calibration set).
Platt recommends regularization:

ti :=
N1 + 1
N1 + 2

if yi = 1 ti :=
1

N0 + 2
if yi = 0,

where N1 (resp. N0) is the number of observations labelled
1 (resp. 0).
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Platt’s method (3)

Disadvantage of Platt’s method: the optimal calibration
function is quite often far from being a sigmoid.
And if the training set is very big, we will suffer, since we
can learn the best shape of the calibration function g.
On the positive side, Platt’s method involves regularization,
and e.g., it never suffers infinite loss when using the log
loss function.
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Isotonic regression (1)

The method of isotonic regression (ABERS, 1955) was
applied to calibrating scoring algorithms by Zadrozny and
Elkan (2002).
Train the scoring classifier on the proper training set and
compute the prediction score s(xi) for each calibration
object xi , i = 1, . . . , k .
Let g be the increasing (=non-decreasing) function on the
set {s(x1), . . . , s(xk )} that maximizes the likelihood

k∏
i=1

pi , where pi :=

{
g(s(xi)) if yi = 1
1− g(s(xi)) if yi = 0.
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Isotonic regression (2)

Such a function g is unique and can be easily found using
the “pair-adjacent violators algorithm” (PAVA).
The function g is called the isotonic regression for
((s(x1), y1), . . . , (s(xk ), yk )).
To predict the label of a test object x , the method of
isotonic regression (IR) finds the closest s(xi) to s(x) and
outputs g(s(xi)) as its prediction.
Variant: we can do both training and calibration on the full
training set.
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Isotonic regression (3)

The method can be implemented efficiently, in time O(k).
First construct CSD (cumulative sum diagram).
The IR function corresponds to its GCM (greatest convex
minorant).
Apply “Graham’s scan”.
It suffices to use one stack.
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Disadvantages of isotonic regression

There is no regularization (which leads, in particular, to an
infinite log loss for a large test set); we have to add an ad
hoc one (if we want to avoid this).
The isotonic regression function is defined only on the
training objects, and we have to take an ad hoc decision
about its values on test objects.
Isotonic regression (applied naively) does not have any
validity guarantees.
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Introduction

Venn–Abers predictors belong to a class of algorithms with
guaranteed “validity” (under the IID assumption).
Another such class: “conformal predictors” (output
prediction sets with a guaranteed coverage probability).
A disadvantage of prediction sets (or p-values) is that they
are not easy to combine with losses/utilities to obtain
optimal decisions.
Venn predictors, on the other hand, output well-calibrated
probabilities (this property, however, is somewhat less
intuitive than the validity property for conformal predictors).
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Taxonomies

A Venn taxonomy A is a measurable function that assigns to
each n ∈ {2,3, . . .} and each sequence (z1, . . . , zn) ∈ Zn an
equivalence relation ∼ on {1, . . . ,n} which is equivariant in the
sense that, for each n and each permutation π of {1, . . . ,n},

(i ∼ j | z1, . . . , zn) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n)),

where the notation (i ∼ j | z1, . . . , zn) means that i is equivalent
to j under the relation assigned by A to (z1, . . . , zn). The
measurability of A means that for all n, i , and j the set
{(z1, . . . , zn) : (i ∼ j | z1, . . . , zn)} is measurable. Define

A(j | z1, . . . , zn) := {i ∈ {1, . . . ,n} | (i ∼ j | z1, . . . , zn)}

to be the equivalence class of j .
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Venn predictors

Let (z1, . . . , zl) be a training sequence of observations
zi = (xi , yi), i = 1, . . . , l , and x be a test object.

The Venn predictor associated with a given Venn taxonomy A
outputs the pair (p0,p1) as its prediction for x ’s label, where

py :=
|A(l + 1 | z1, . . . , zl , (x , y)) ∩ {i | yi = 1}|

|A(l + 1 | z1, . . . , zl , (x , y))|

for both y ∈ {0,1}.

Intuitively: p0 and p1 are the predicted probabilities that the
label of x is 1 (useful only when p0 ≈ p1).
The probability interval output by a Venn predictor is the
convex hull conv(p0,p1) of the set {p0,p1}.
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Unbiasedness in the small

A random variable P taking values in [0,1] is perfectly
calibrated for a random variable Y taking values in {0,1} if
E(Y | P) = P a.s.
Intuitively: P is the prediction made by a probabilistic
predictor for Y ; perfect calibration means that the
probabilistic predictor gets the probabilities right, at least
on average, for each value of the prediction.
When we have an approximate equality: P is “valid”, “well
calibrated”, or “unbiased in the small”.
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Validity theorem

A selector is a random variable taking values 0 or 1.

Theorem: Let (X1,Y1), . . . , (Xl ,Yl), (X ,Y ) be IID random
observations. Fix a Venn predictor V and an l ∈ {1,2, . . .}. Let
(P0,P1) be the output of V given (X1,Y1, . . . ,Xl ,Yl) as the
training set and X as the test object. There exists a selector S
such that PS is perfectly calibrated for Y .

Intuitively: at least one of the two probabilities output by
the Venn predictor is perfectly calibrated.
Hopefully, they are not far apart.
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Unbiasedness in the large

Corollary: For any Venn predictor V and any l = 1,2, . . .,

P(Y = 1) ∈
[
E (V (X ; X1,Y1, . . . ,Xl ,Yl)) ,

E
(
V (X ; X1,Y1, . . . ,Xl ,Yl)

)]
,

where (X1,Y1), . . . , (Xl ,Yl), (X ,Y ) are IID observations and
[V (. . .),V (. . .)] is the probability interval produced by V for the
test object X based on the training sequence
(X1,Y1, . . . ,Xl ,Yl).
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Universality of Venn predictors (1)

A multiprobabilistic predictor is a function that maps each
training sequence (z1, . . . , zl) ∈ Zl to a subset of [0,1].
A multiprobabilistic predictor is invariant if it is independent
of the ordering of the training sequence (z1, . . . , zl).
An invariant selector for an invariant multiprobabilistic
predictor F is a measurable function f : Zl+1 → [0,1] such
that f (z1, . . . , zl+1) does not change when z1, . . . , zl are
permuted and such that f (z1, . . . , zl+1) ∈ F (z1, . . . , zl) for
all (z1, . . . , zl+1).
An invariant multiprobabilistic predictor F is invariantly
perfectly calibrated if it has an invariant selector f such that

E
(
Y | f (Z1, . . . ,Zl , (X ,Y ))

)
= f (Z1, . . . ,Zl , (X ,Y )) a.s.

whenever Z1, . . . ,Zl , (X ,Y ) are IID observations.
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Universality of Venn predictors (2)

Theorem: If an invariant multiprobabilistic predictor F is
invariantly perfectly calibrated, then it contains a Venn predictor
V in the sense that both elements of V (Z1, . . . ,Zl) belong to
F (Z1, . . . ,Zl) almost surely provided Z1, . . . ,Zl are IID.

The invariance assumptions in this theorem are essential:

Proposition: One can construct a perfectly calibrated
non-invariant multiprobabilistic predictor that does not contain a
Venn predictor.
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Disadvantage of the Venn method

It is not easy to come up with a suitable Venn taxonomy
(has to be hand-crafted for each problem and application
area).
Venn–Abers predictors is a class of Venn predictors that
can be applied in an automatic manner on top of any
scoring algorithm.
Venn–Abers predictors are based on Isotonic Regression,
and can be regarded its regularized version.
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Venn–Abers predictors

Try the two different labels, 0 and 1, for the test object x . Let s0
be the scoring function for (z1, . . . , zl , (x ,0)), s1 be the scoring
function for (z1, . . . , zl , (x ,1)), g0 be the isotonic regression for(

(s0(x1), y1), . . . , (s0(xl), yl), (s0(x),0)
)
,

and g1 be the isotonic regression for(
(s1(x1), y1), . . . , (s1(xl), yl), (s1(x),1)

)
.

The multiprobabilistic prediction output by the Venn–Abers
predictor (VAP) is (p0,p1), where p0 := g0(s0(x)) and
p1 := g1(s1(x)). (And we can expect p0 and p1 to be close to
each other unless IR overfits grossly.)
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Validity of Venn–Abers predictors

The following proposition says that Venn–Abers predictors are
Venn predictors and, therefore, inherit all properties of validity
of the latter.

Proposition: Venn–Abers predictors are Venn predictors.

This is also true if scores take values in a partially ordered
set (a standard setting for isotonic regression).
The reason is that the isotonic regression is always of the
following form: the given set of scores is split into disjoint
blocks; the isotonic regression is constant on each block
and equal to the average of its labels.
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Why are partially ordered scores important?

An example (Vladimir Vapnik’s idea of synergy):
Suppose we have several (say two) good scoring
algorithms (such as SVMs with different kernels).
Define the composite score of an object as the pair
(score1, score2) (a point in the plane). The order:

(x1, y1) � (x2, y2) means (x1 ≤ x2) & (y1 ≤ y2).

The corresponding isotonic regression potentially makes
use of a valuable synergy between the two algorithms.
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Probabilistic predictors out of Venn–Abers predictors

We can’t compare Venn–Abers predictors with known
probabilistic predictors using standard loss functions; we need
to fit the former (somewhat artificially) to the standard
framework by extracting one probability p from p0 and p1.

We use two loss functions: the log loss and the square loss

λlog(p, y) :=

{
− log(1− p) if y = 0
− log p if y = 1

λsq(p, y) := 4(y−p)2,

log being binary log. To apply them to VAPs, we replace a
probability interval by an average of its end-points (to be
discussed).
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Loss functions

On a given test sequence of length n we calculate the mean log
error and the mean square error

MLE :=
1
n

n∑
i=1

λlog(pi , yi) ∈ [0,1],

MSE :=
1
n

n∑
i=1

λsq(pi , yi) ∈ [0,1],

where pi is the probabilistic prediction for the label yi of the i th
observation in the test sequence.

In our first experiment we randomly permute the dataset and
use the first 2/3 observations for training and the remaining 1/3
for testing.
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Simplified Venn–Abers predictors

The simplified Venn–Abers predictor for a given scoring
classifier is defined as follows. Let (z1, . . . , zl) be a training
sequence and x be a test object. Define s to be the scoring
function for (z1, . . . , zl), g0 to be the isotonic regression for(

(s(x1), y1), . . . , (s(xl), yl), (s(x),0)
)
,

and g1 to be the isotonic regression for(
(s(x1), y1), . . . , (s(xl), yl), (s(x),1)

)
.

The multiprobabilistic prediction output for the label of x by the
simplified Venn–Abers predictor (SVAP) is (p0,p1), where
p0 := g0(s(x)) and p1 := g1(s(x)).
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Ranking of the best three methods (out of
W/VA/SVA/IR) (1)

log loss
Australian W (JB), VAP (LR), SVAP (LR)
Breast SVAP (NB), VAP (NB), W (JB)
Diabetes VAP (LR), SVAP (SVM), W (SVM)
Echo VAP (SVM), SVAP (NB), W (JB)
Hepatitis VAP (SVM), SVAP (NB), W (JB)
Ionosphere SVAP (NB), VAP (SVM), W (SVM)
Labor SVAP (SVM), W (NN), VAP (SVM)
Liver VAP (NN), W (JB), SVAP (LR)
Vote SVAP (SVM), W (SVM), VAP (J)

For IR, the full training set is used both for training the scoring
classifier and for calibration. W=Weka.
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Ranking of the best three methods (out of
W/VA/SVA/IR) (2)

square loss
Australian W (JB), SVAP (JB), VAP (LR)
Breast SVAP (NB), VAP (SVM), IR (NB)
Diabetes VAP (SVM), W (LR), SVAP (SVM)
Echo VAP (NB), SVAP (NB), W (SVM)
Hepatitis SVAP (NB), VAP (NB), IR (NB)
Ionosphere SVAP (NB), IR (NB), W (JB)
Labor W (NB), SVAP (SVM), IR (NB)
Liver VAP (NN), SVAP (NN), W (JB)
Vote W (SVM), SVAP (SVM), VAP (J)
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IVAPs (1)

As functions, IVAPs are defined as follows:
Divide the training set of size l into two subsets, the proper
training set of size m and the calibration set of size k ,
l = m + k .
Train a scoring algorithm on the proper training set.
Find the scores s1, . . . , sk of the calibration objects
x1, . . . , xk .
When a new object x arrives, compute its score s.
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IVAPs (2)

Fit isotonic regression to (s1, y1), . . . , (sk , yk ), (s,0)
obtaining a function f0.
Fit isotonic regression to (s1, y1), . . . , (sk , yk ), (s,1)
obtaining a function f1.
The multiprobabilistic prediction for the label y of x is the
pair (f0(s), f1(s)).

Intuitively, the prediction is that the probability that y = 1 is
either f0(s) or f1(s).
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Validity of IVAPs

A random variable P taking values in [0,1] is perfectly
calibrated (as predictor) for a random variable Y taking values
in {0,1} if E(Y | P) = P a.s. A selector is a random variable
taking values in {0,1}.

Proposition: Let (P0,P1) be an IVAP’s prediction for X output
based on a training sequence (X1,Y1), . . . , (Xl ,Yl). There is a
selector S such that PS is perfectly calibrated for Y provided
the random observations (X1,Y1), . . . , (Xl ,Yl), (X ,Y ) are IID.
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Computational efficiency of IVAPs

Proposition:
Given the scores s1, . . . , sk of the calibration objects, the
prediction rule for computing the IVAP’s predictions can be
computed in time O(k log k) and space O(k).
Its application to each test object takes time O(log k).
Given the sorted scores, the prediction rule can be
computed in time and space O(k).
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CVAPs (1)

A CVAP is just a combination of K IVAPs, where K is the
parameter of the algorithm.

Split the training multiset T randomly into K folds
T1, . . . ,TK .
For k ∈ {1, . . . ,K},

(pk
0 ,p

k
1) := IVAP(T \ Tk ,Tk , x).

Return GM(p1)/(GM(1− p0) + GM(p1)) (where GM stands
for geometric mean, so that GM(p1) is the geometric mean
of p1

1, . . . ,p
K
1 and GM(1− p0) is the geometric mean of

1− p1
0, . . . ,1− pK

0 ).
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CVAPs (2)

The folds should be of approximately equal size.
A justification of the expression
GM(p1)/(GM(1− p0) + GM(p1)) used for merging the
IVAPs’ outputs: minimax (details on the next slide).
We have no theoretical guarantees of validity for CVAPs.
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Merging multiprobabilistic predictions (1)

Suppose the predictions are (p1
0,p

1
1), . . . , (pK

0 ,p
K
1 ). The extra

cumulative loss of (1− p,p) when the true label is 1 is

log
p1

1
p

+ · · ·+ log
pK

1
p
,

and when the true label is 0 it is

log
1− p1

0
1− p

+ · · ·+ log
1− pK

0
1− p

.

Equalizing the two expressions:

p1
1 · · · pK

1
pK =

(1− p1
0) · · · (1− pK

0 )

(1− p)K ,

which gives the required expression for p.
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Merging multiprobabilistic predictions (2)

In the case of the square loss function, we solve the linear
equation

(1− p)2 − (1− p1
1)2 + · · ·+ (1− p)2 − (1− pK

1 )2

= p2 − (p1
0)2 + · · ·+ p2 − (pK

0 )2

in p; the result is

p =
1
K

K∑
k=1

(
pk

1 +
1
2

(pk
0)2 − 1

2
(pk

1)2
)
.
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Calibration curves for NB and NB CVAP; ρ = 0 (left)
and ρ = 0.5 (right); l = n = 105 and p = 5
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Preliminary results − naive Bayes
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Experiment 1

The adult data set (used in all papers on this topic;
results are typical).
We use the given training (32,561 observations) and test
(16,281) sets; the training set is split into a proper training
set and a calibration set (with no randomization, for
reproducibility).
The horizontal axis is labelled by

the size of the proper training set
the size of the calibration set

.

(Except for “all”, in which all training set is used for both
training and calibration; unstable.)
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Results for the log loss
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Platt
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1 2 3 4 all
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Results for the square loss
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Experiment 2

A natural question: are CVAP results better because of the
cross-over or extra regularization?
The same data set.
We use the first 5,000 observations as the training and the
rest as the test set. IVAP and IR: the first 4,000 are used
as the proper training set, and the following 1,000 as the
calibration set.
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Results for the log loss

algorithm Platt IR IVAP CVAP
J48 0.532 0.519 0.514 0.481

J48 bagging 0.489 ∞ 0.470 0.456
logistic 0.520 ∞ 0.504 0.497

naive Bayes 0.553 ∞ 0.484 0.475
neural networks 0.534 ∞ 0.514 0.481

SVM 0.537 ∞ 0.521 0.512
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Results for the square loss

algorithm Platt IR IVAP CVAP
J48 0.455 0.449 0.448 0.417

J48 bagging 0.418 0.416 0.416 0.401
logistic 0.452 0.453 0.446 0.438

naive Bayes 0.467 0.433 0.431 0.423
neural networks 0.461 0.463 0.457 0.424

SVM 0.468 0.471 0.462 0.452
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Experiments on tiny data sets

The following tables report results used for our tables given
earlier.
SVAP gives a better result than IR in 52 cases out of 54 for
the square loss (IR is hopeless for the log loss).
For these tiny data sets it is difficult to improve the
performance of bagging by calibration (but bagging rarely
produces best results).
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Results for the log loss [natural] (1)

J48 J48 Bagging logistic regression
size W SVAP IR W SVAP IR W SVAP IR

Australian 690 ∞ 0.469 ∞ 0.328 0.344 ∞ 0.342 0.340 ∞
Breast 286 ∞ 0.642 ∞ 0.581 0.636 ∞ 0.584 0.586 ∞
Diabetes 768 ∞ 0.635 ∞ 0.504 0.561 ∞ 0.492 0.491 ∞
Echo 132 ∞ 0.670 ∞ 0.556 0.563 ∞ ∞ 0.606 ∞
Hepatitis 155 ∞ 0.528 ∞ 0.420 0.434 ∞ ∞ 0.504 ∞
Ionosphere 351 ∞ 0.410 ∞ ∞ 0.251 ∞ ∞ 0.524 ∞
Labor 57 ∞ 0.537 ∞ 0.427 0.385 ∞ 1.927 0.297 ∞
Liver 345 ∞ 0.866 ∞ 0.609 0.707 ∞ 0.619 0.611 ∞
Vote 435 ∞ 0.145 ∞ 0.135 0.131 ∞ 1.059 0.148 ∞
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Results for the log loss [natural] (2)

naive Bayes neural networks SVM Platt
W SVAP IR W SVAP IR W SVAP IR

Australian 0.839 0.367 ∞ 0.557 0.450 ∞ 0.391 0.351 ∞
Breast 0.663 0.551 ∞ 0.774 0.738 ∞ 0.583 0.582 ∞
Diabetes 0.753 0.508 ∞ 0.536 0.519 ∞ 0.491 0.490 ∞
Echo 0.658 0.522 ∞ 0.770 0.605 ∞ 0.558 0.538 ∞
Hepatitis 0.936 0.372 ∞ 0.753 0.484 ∞ 0.435 0.404 ∞
Ionosphere 0.704 0.227 ∞ 0.625 0.379 ∞ 0.359 0.333 ∞
Labor 1.854 0.296 ∞ 0.325 0.298 ∞ 3.643 0.287 ∞
Liver 0.727 0.661 ∞ 0.642 0.615 ∞ 0.645 0.639 ∞
Vote 0.594 0.211 ∞ 0.235 0.158 ∞ 0.125 0.121 ∞
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Results for the square loss [RMSE] (1)

J48 J48 Bagging logistic regression
W SVAP IR W SVAP IR W SVAP IR

Australian 0.366 0.359 0.366 0.313 0.318 0.323 0.317 0.319 0.321
Breast 0.472 0.463 0.473 0.443 0.460 0.474 0.442 0.444 0.450
Diabetes 0.449 0.443 0.449 0.407 0.420 0.427 0.399 0.401 0.402
Echo 0.478 0.460 0.482 0.427 0.423 0.444 0.457 0.446 0.475
Hepatitis 0.407 0.401 0.419 0.362 0.368 0.391 0.400 0.384 0.411
Ionosphere 0.318 0.312 0.318 0.267 0.261 0.267 0.357 0.349 0.361
Labor 0.407 0.402 0.413 0.361 0.339 0.341 0.294 0.287 0.303
Liver 0.528 0.518 0.528 0.457 0.478 0.493 0.460 0.458 0.461
Vote 0.187 0.186 0.187 0.187 0.186 0.188 0.198 0.195 0.203
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Results for the square loss [RMSE] (2)

naive Bayes neural networks SVM Platt
W SVAP IR W SVAP IR W SVAP IR

Australian 0.392 0.333 0.335 0.360 0.361 0.371 0.343 0.325 0.327
Breast 0.449 0.427 0.433 0.485 0.491 0.508 0.443 0.442 0.447
Diabetes 0.420 0.410 0.413 0.413 0.413 0.417 0.399 0.400 0.402
Echo 0.428 0.412 0.426 0.457 0.443 0.468 0.416 0.418 0.431
Hepatitis 0.357 0.335 0.342 0.396 0.379 0.427 0.350 0.353 0.364
Ionosphere 0.281 0.250 0.251 0.321 0.316 0.333 0.312 0.312 0.316
Labor 0.256 0.284 0.281 0.279 0.293 0.307 0.274 0.280 0.283
Liver 0.480 0.478 0.487 0.459 0.456 0.463 0.473 0.472 0.477
Vote 0.292 0.251 0.250 0.216 0.206 0.227 0.183 0.185 0.188
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A role for imprecise probabilities?

Venn–Abers predictors output imprecise probabilities
(multiprobabilities), which we then merge into precise
probabilities in order to evaluate their quality.
Perhaps imprecise probabilities are useless for automatic
(en masse) decision making.
But they can be quite informative in less formal and more
individual cases (such as quoting probabilities for the
presence of an illness in medicine).
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Conclusion (1)

Open problem:
Suppose we know the data-generating mechanism but still
apply IVAP to the optimal probabilistic predictions. How
much do we lose? (For example, how far will p0 and p1 be
from the optimal p asymptotically?)

A similar programme in the case of conformal predictors:

Evgeny Burnaev and Vladimir Vovk. Efficiency of
conformalized ridge regression. Proceedings of COLT
2014.

And if we lose a lot: doesn’t it mean that the Bayesian algorithm
is extremely fragile? (Larry Wasserman, in the context of
conformal prediction)
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Conclusion (2)

Further details:

Vladimir Vovk, Alex Gammerman, and Glenn Shafer.
Algorithmic Learning in a Random World. New York:
Springer, 2005.
Vladimir Vovk and Ivan Petej. Venn–Abers predictors.
Proceedings of UAI 2014. Available on arXiv.
Vladimir Vovk, Ivan Petej, and Valentina Fedorova.
Large-scale probabilistic predictors with and without
guarantees of validity. Proceedings of NIPS 2015 (to
appear). Available on arXiv.

Thank you for your attention!
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