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Prelude: Kelly Gambling

• Suppose we observe sequence 𝑋1, 𝑋2, … of 0s and 1s

• At each point in time 𝑖,  we can buy a ticket 𝑇𝑖,1 that 

pays off $2 iff 𝑋𝑖 = 1, and a ticket 𝑇𝑖,0 that pays off $2 

iff 𝑋𝑖 = 0. Both tickets cost $1

• Crucially: we are allowed to divide our capital any way 

we like and re-invest our capital at each point in time

– e.g. By putting 50% of your capital at time i on 𝑇𝑖,1 and 50% on 

𝑇𝑖,0 you make sure that your capital remains the same 

Prelude: Kelly Gambling

• At each time 𝑖,  we can buy a ticket 𝑇𝑖,1 that pays off 

$2 iff 𝑋𝑖 = 1, and a ticket 𝑇𝑖,0 that pays off $2 iff 𝑋𝑖 =

0. Both tickets cost $1

• A gambling strategy in this game is a function              

and thus defines a probability 

distr. on 0,1 ∞ via setting

• If we follow such a strategy and start with $1, our 

capital after n rounds will be 

How to design a gambling 

strategy?

• A gambling strategy in this game is formally 

equivalent to a probability distribution  𝑃 on infinite 

sequences. Which strategy should we adopt?

How to design a gambling 

strategy?

• A gambling strategy in this game is formally 

equivalent to a probability distribution  𝑃 on infinite 

sequences. Which strategy should we adopt?

• Strict Subjective Bayesian: think very long about the 

situation, come up with a subjective distribution 𝑃∗, 
and then play the distribution  𝑃 maximizing expected 

gain (we may have  𝑃 ≠ 𝑃∗)

• Imprecise Probabilist: come up with a set of 

distributions      , and then play the distribution 
 𝑃 optimal relative to      , with optimality defined 

relative to some additional criterion (which one?) 

How to design a gambling 

strategy?

• Strict Subjective Bayesian: determine subjective 𝑃∗, 
and then play optimal  𝑃 (we may have  𝑃 ≠ 𝑃∗)

• Imprecise: determine set      and play “optimal”  𝑃

• Information Theorist: pick any gambling strategy 

which you think might gain you a lot. E.g. if you think 

frequency might converge to 𝑝 ≠ 0.5, you might play 

Laplace rule of succession...
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How to design a gambling 

strategy?

• Strict Subjective Bayesian: determine subjective 𝑃∗, 
and then play optimal  𝑃 (we may have  𝑃 ≠ 𝑃∗)

• Imprecise: determine set      and play “optimal”  𝑃

• Information Theorist: pick any gambling strategy 

which you think might gain you a lot. E.g. if you think 

frequency might converge to 𝑝 ≠ 0.5, you might play 

Laplace rule of succession...

...if your hypothesis about frequence is correct, you gain 

exponential amount of money even  if at the same time 

you think data are not Bernoulli (or not even stationary)

Starting Point

• Adopting a Bayesian predictive distribution like the 

Laplace Rule of Succession if you think data are not 

Bernoulli is o.k. (and I think, rational!) for some 

prediction tasks...

– Sequential gambling, Data Compression

...but not for others:

– 0/1-loss prediction (no fractional bets!) when you are only 

asked to predict 𝑋𝑖 in the situation that 𝑋𝑖−1 = 1

• I want to design a theory which can cope with such 

‘partially useable’ distributions

A Middle Ground between strict 

Bayes and imprecise probability

• Set of distrs        has unique 

representative, as in ‘objective 

Bayes’, fiducial inference, Maximum 

Entropy, data compression...

• One absolutely crucial difference: 

we restrict use of  𝑃 to subset of all 

possible prediction tasks: we know 

in advance that  𝑃 should not be 

taken to seriously 

• Provides unifying and 

demistifying view 

 𝑃

 𝑃

Menu

1. The Setting

2. Definition 1, Example 1: Dilation

3. Definition 2, Example 1 cont.

4. Definition 3-4, Example 2: Calibration

5. Example 3: Fiducial Distributions

6. Desert: Monty Hall Problem, Decision Safety

The Setting 

• Let      be a set of distributions on a space Ω, representing 

Decision-Maker (DM)’s  uncertainty about a domain 

• DM has to make predictions/assertions about some 𝑈 (or a 

function thereof), upon observing 𝑉. Both 𝑈 and 𝑉 are RVs 

(random variables) on Ω, taking values in    and    , resp. 

• She does so using a pragmatic distribution  𝑃 𝑈 𝑉 , 

defined as a conditional distribution of 𝑈 given 𝑉 , i.e. a 

function mapping each          to a distribution                      

on

• Whenever     finite, we think of         

as a column vector    

The Setting 

 𝑃(𝑈|𝑉)

• A Bayesian would have                 a singleton and could 

then set 

• Note that 𝑃∗ is a distribution on Ω, inducing a joint  

which in turn induces                , while                is 

directly defined as a conditional

(hence  𝑃 in picture to be taken with grain of salt)   
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The Setting 

• A Bayesian would have                 a singleton and could 

then set

• We have to do something else – sometimes eqv. to 

conditioning on a special element of      , sometimes 

really different...  

 𝑷 is really a probability update rule!!

 𝑃(𝑈|𝑉)

First Definition: Weak Safety

• We say that  𝑃 𝑈 𝑉 is safe for 𝑈 | 〈𝑉〉 if for all            :           

• i.e.  

First Definition

• We say that  𝑃 𝑈 𝑉 is safe for 𝑈 | 〈𝑉〉 if for all            :           

• i.e.  

First Definition

• We say that  𝑃 𝑈 𝑉 is safe for 𝑈 | 〈𝑉〉 if for all            :           

• i.e. we can expect our expectation of 𝑈 to be ‘correct’ 

(in a relative sense) 

• we will usually want somewhat stronger versions of 

‘safety’

First Example: Dilation

• Given: marginal probability of 𝑈. 𝑈 may depend on 

𝑉, but we have no idea how

• Task:  predict 𝑈 given 𝑉.

• Suppose we observe 𝑉 = 0. Now conditional 

probability could be anything...

• Similarly if we observe 𝑉 = 1:

Dilation

Before observing 𝑉 we had precise probability           

after we only know                              is in large superset

“extra information  less knowledge

no matter what you observe!”

Seidenfeld & Wasserman, ‘93



Peter Grünwald November 2015

Safe Probability – Workshop Teddy 

Seidenfeld 4

• Pointwise conditioning gives dilation 

• Instead we may decide to ignore 𝑉, i.e. act as if 𝑈
and 𝑉 are independent, and predict with the 

pragmatic distribution

• Proposition:   𝑃 𝑈 𝑉 is safe for 𝑈 | 〈𝑉〉

• i.e.  

Ignoring instead of Dilating First Example of ‘Safety’

• REALITY: U may be dependent on V

• PRAGMATICS: we nevertheless decide to predict U 

with a distribution that assumes U and V are 

independent

• Our predictions will be just as accurate as we 

would expect them to be if our pragmatic 

distribution  𝑷 were ‘correct’

• ...as long as we only use  𝑃 only for certain, not all 

prediction tasks...

Definition 2, Preparation

• We write               if there exists a function 𝜙 such that 

𝜙 𝑋 ≡ 𝑌 (“ 𝑋 determines 𝑌 “)

•  𝑃 𝑈 𝑉 can be used to predict not just 𝑈, but also any 

𝑈′ determined by (𝑈, 𝑉) , i.e. with                      :

Definition 2

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑼′ |〈𝑉〉 if                    and for 

all              :  

• We say that  𝑃 𝑈 𝑉 is safe for 𝑼 | 〈𝑉〉 if for all 𝑈′ with

, all             :

with             :

Definition 2

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑼′ |〈𝑉〉 if                    and for 

all              :  

• We say that  𝑃 𝑈 𝑉 is safe for 𝑼 | 〈𝑉〉 if for all 𝑈′ with

, all             :

with             :

Example 1(b) - dilation again

• Task:  predict 𝑈 given 𝑉.

• Again we decide to ignore 𝑉 and set e.g. for all          :

• Then  𝑃 is safe for 𝑈 | 〈𝑉〉 but not for 𝑈 | 〈𝑉〉
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Example 1(c) 

• Task: predict 𝑈 given 𝑉.

• Again we decide to ignore 𝑉 and set e.g. for all          :

• Then, again,   𝑃 is safe for 𝑈 | 〈𝑉〉 but not for 𝑈 | 〈𝑉〉

Example 1(c): use the marginal

• Task: predict 𝑈 given 𝑉.

• Again we decide to ignore 𝑉 and set e.g. for all          :

• Then    𝑃 is safe for 𝑈 | 〈𝑉〉 and also for 𝑈 | 〈𝑉〉

Definition 3, Preparation

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑈′ |〈𝑉〉 if                    and for 

all              :

• Leave out ‘                    ‘ part from now on, for brevity  

with             :

Definition 3

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑈′ |〈𝑉〉 if for all              :  

• We say that  𝑃 𝑈 𝑉 is safe for 〈𝑈′〉| 𝑽 if for all             :

with             :

Definition 3

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑈′ |〈𝑉〉 if for all              :  

• We say that  𝑃 𝑈 𝑉 is safe for 〈𝑈′〉| 𝑽 if for all             :

• Our expectation of U’ is (relatively) correct
with             :

Definition 3, 3b

• Recall:  𝑃 𝑈 𝑉 is safe for 𝑈′ |〈𝑉〉 if for all              :  

• We say that  𝑃 𝑈 𝑉 is safe for 〈𝑈′〉| 𝑽 if for all             :

• We say that  𝑃 𝑈 𝑉 is safe for 𝑼′| 𝑽 if for all             :

i.e. 𝑃∗ is unique and   𝑃 is almost surely ‘correct’

with             :
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Definition 3c...

• We can now also combine definitions, e.g.  𝑃 𝑈 𝑉 is 

safe for 〈𝑈′〉| 〈𝑽〉,𝑾 if ....(details omitted)... 

with             :

Ex. 2, Calibration: preparation

• Recall:  𝑃 𝑈 𝑉 can be used to predict not just 𝑈, but 

also any 𝑈′ determined by (𝑈, 𝑉) , i.e. with                      

Ex. 2, Calibration: preparation

• Recall:  𝑃 𝑈 𝑉 can be used to predict not just 𝑈, but 

also any 𝑈′ determined by (𝑈, 𝑉) , i.e. with                      

• Similarly,  𝑃 𝑈 𝑉 can also be used to predict not just 

given 𝑉, but also given any 𝑉′ with             and extra 

condition that  for all 𝑣1, 𝑣2, 𝑣1 ≠ 𝑣2 : 

• For such 𝑉′,  𝑃 𝑈 𝑉′ is well-defined

• Example: earlier  𝑃 that treated 𝑈, 𝑉 as independent:                        

Ex. 2, preparation

•  𝑃 𝑈 𝑉 can be used to predict not just given 𝑉, but also 

given any 𝑉′ with             and extra condition that  for 

all 𝑣1, 𝑣2, 𝑣1 ≠ 𝑣2 : 

• compact  restatement:  𝑃 𝑈 𝑉 can also be used to 

predict (i.e. induces a unique definition of  𝑃 𝑈 𝑉′ ) 

based on any 𝑉′ with 

Ex. 2., Calibration

• We say that  𝑃 𝑈 𝑉 is strongly calibrated for 𝑈′| 𝑽

.....if it is safe for 𝑈′ |  𝑃 𝑈 𝑉 !     

...i.e. for all

Ex. 2., Calibration

• We say that  𝑃 𝑈 𝑉 is strongly calibrated for 𝑈′| 𝑽

.....if it is safe for 𝑈′ |  𝑃 𝑈 𝑉 !     

...i.e. for all

• Ex.: a weather forecaster predicts daily precipitation 

probabilities  𝑃 𝑈 𝑉 , based on measurements of air 

pressure and temperature taken all over the world

– so 𝑉 is a giant vector. WF will probably not be able to give 

accurate predictions given the air pressure in Honolulu, 

although his predictions do depend thereon. We don’t mind 

this, but we do want her to be calibrated!
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Ex. 3, Fiducial Distributions

• Determining a distribution on parameters              

without a prior, i.e. cooking a Bayesian omelet 

without breaking the Bayesian eggs

• Introduced by Fisher (1935, Annals of Eugenics)

Once almost on a par with Bayes and frequentist 

approaches; but turned out to suffer severe difficulties

– e.g., Seidenfeld ‘92  

• Yet it is making a small comeback under the name 

confidence distributions (Hjort & Schweder, 2000)

Fiducial Distributions

• Simple Example: normal location family

• Fisher observed that the density of the ML estimator     

satisfies

which is symmetric in 𝜃,  𝜃 … so that for each

must give a distribution on 𝜃 …

Fiducial Distributions

• Simple Example: normal location family

• Fisher observed that the density of the ML estimator     

satisfies

which is symmetric in 𝜃,  𝜃 … so that for each

must give a distribution on 𝜃 …

...Fisher now boldly treated this is a sort-of posterior...

Fiducial Distribution

• Can do similar reversal for other 1-parameter 

distributions.

– For scale and location families, the fiducial distr is equal to 

the Bayes’ posterior with the improper Jeffreys’ prior

– For other families, no 100% Bayes interpretation (Lindley, 

Seidenfeld) 

– For Bayesians this seems flawed: there must be a prior

– For Frequentists this seems flawed: 𝜃 is fixed, not a random 

variable!!

Fiducial Distributions and 

Confidence 

• It has long been known that fiducial distributions are 

“o.k.” if used to determine confidence intervals...

suppose 𝑋1, 𝑋2, … i.i.d. ∼ 𝑃𝜃∗, for any

Set 𝜃+ = 𝜃+(𝑋𝑛) and  𝜃− = 𝜃−(𝑋𝑛) such that 

• Then:

Fiducial Distributions and 

Confidence 

• It has long been known that fiducial distributions are 

“o.k.” if used to determine confidence intervals...

• ...but are not o.k. “in general” (but what exactly does 

this mean? And what are they o.k. for?) 
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• Let      be any set of distributions on                         

such that  for all 

(    may e.g. only contain degenerate distr on    )

• We define some ̀ pragmatic posterior’                and... 

• DEF: we say that                is fiducially safe if it is safe 

for  𝐹 . 𝑋𝑛 | 〈𝑋𝑛〉 , where

is the distribution function of 

Using Fiducial Distributions Safely

• Let      be any set of distributions on                         

such that  for all

• DEF: we say that               if it is safe for 
 𝐹 . 𝑋𝑛 〈𝑋𝑛

• PROP: if defined in the usual way, ‘fiducial’ 

distributions are fiducially safe

Using Fiducial Distributions Safely

• Let      be any set of distributions on                         

such that  for all

• DEF: we say that               if it is safe for 
 𝐹 . 𝑋𝑛 〈𝑋𝑛

• PROP: if defined in the usual way, ‘fiducial’ 

distributions are fiducially safe

• This means they can be safely used to predict any 

RV 𝑈′ determined by

– For example,                        is fiducially safe to predict...

Using Fiducial Distributions Safely

• Let      be any set of distributions on                         

such that  for all

• DEF: we say that                is fiducially safe for 

𝜃| 〈𝑋𝑛〉 if it is safe for  𝐹 . 𝑋𝑛 〈𝑋𝑛

• PROP: if defined in the usual way, ‘fiducial’ 

distributions are fiducially safe

• This means they can be safely used to predict any 

RV 𝑈′ determined by

– For example,                        is fiducially safe to predict...

– ....but                             is not!   

Using Fiducial Distributions Safely

Dilation-Fiducial Duality

• DILATION-REALITY: U may be dependent on V

• DILATION-PRAGMATICS: we nevertheless decide 

to predict U with a distribution that assumes U and V 

are independent

• FIDUCIAL-REALITY: U may be independent of V, 

it may even be fixed – but its value is unknown

• FIDUCIAL-PRAGMATICS: we nevertheless predict 

U with a distribution that assumes U and V are 

dependent 
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Desert: Monty Hall (3-door) 

Problem Monty Hall 1970

Monty Hall

• There are three doors in the TV studio. Behind one 
door is a car, behind both other doors a goat. You 
choose one of the doors. Monty Hall opens one of 
the other two doors, and shows that there is a goat 
behind it. You are now allowed to switch to the other 
door that is still closed. Is it smart to switch?

The Monty Hall Wikipedia Wars

• Both sides agree:

1. It is better to switch!

2. To model problem correctly, you must take Monty’s Protocol 

into account – what does Monty do when he has a choice? 

(Gill 11, Mlodinow 08)

The Monty Hall Wikipedia Wars

• Both sides agree:

1. It is better to switch!

2. To model problem correctly, you must take Monty’s Protocol 

into account – what does Monty do when he has a choice? 

• “war” is about how to prove that switching is better:  

• “strictly Bayesian”: via conditioning, with additional 

assumption that Monty chooses by tossing a fair coin

• credal set (imprecise probability, ambiguity)-based:  

make no assumptions on Monty and show e.g. that 

switching is minimax optimal

(Gill 11, Mlodinow 08)

The Monty Hall Wikipedia Wars

• Both sides agree:

1. It is better to switch!

2. To model problem correctly, you must take Monty’s Protocol 

into account – what does Monty do when he has a choice? 

• “war” is about how to prove that switching is better:  

• “strictly Bayesian”: via conditioning, with additional 

assumption that Monty chooses by tossing a fair coin

• credal set (imprecise probability, ambiguity)-based:  

make no assumptions on Monty and show switching is 

e.g. dominating strategy

(Gill 11, Mlodinow 08)

This is really what Gilboa called the ‘eternal discussion’ 

The Model on which they agree

• Suppose Contestant invariably chooses door a.

• Let RV Y denote location of car: 

• Let RV X denote Monty’s action:

means Monty opens door c.

means Monty opens door b.  
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The Model on which they agree

• Suppose Contestant invariably chooses door a.

• Let RV Y denote location of car.

• Let RV X denote Monty’s action.

The Point Probabilists’ Side

• Suppose Contestant invariably chooses door a.

• Let RV Y denote location of car. 

• Let RV X denote Monty’s action.

The Sets-of-Probabilities Side

• Suppose Contestant invariably chooses door a.

• Let RV Y denote location of car.

• Let RV X denote Monty’s action.

!

Dilation

leads to 

Instance of (partial) dilation (Seidenfeld,Wasserman 93):

Before observing X we had precise probability           

after we only know                              is in large superset

Dilation

leads to 

Instance of (partial) dilation (Seidenfeld,Wasserman 93):

Before observing X we had precise probability           

after we only know                              is in large superset

“extra information  less knowledge

no matter what you observe!”

• To avoid dilation, tempting to become precise 

probabilist and  pretend that choices in protocol 

were made by fair coin tosses:

...implying the familiar result

Assuming an Unbiased Monty 
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• ..., i.e. use 

is

1. “safe” and 

2. minimax optimal 

....under all symmetric decision problems and all, 

even asymmetric Kelly gambling problems

Assuming an Unbiased Monty... 

P±(Y = b j X = open(c)) := 2=3

Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

where

Safety for Decision Problems 

EP±[Loss(Y; ±P±(X))] = EP¤[Loss(Y; ±P±(X))]

P¤ 2 P¤

Loss : Y £A! R

A= set of actions

±P ±(x) := argmin
q2A

EP±jX=x[loss(Y; q)] = Bayes act rel. to P ±

Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Example:

Safety

P¤ 2 P¤

Loss : Y £A! f0;1g
Loss(Y; ŷ) = 1Y 6=ŷ

±P±( open(c)) = b ; ±P±( open(b)) = c:

A= fa; b; cg
=1/3

EP±[Loss(Y; ±P±(X))] = EP¤[Loss(Y; ±P±(X))]

Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Safety

P¤ 2 P¤

Decision-Maker’s pragmatic distribution

‘true’ distribution

credal set

Bayes act based on       P ±

EP±[Loss(Y; ±P±(X))] = EP¤[Loss(Y; ±P±(X))]

Unbiased Monty is  

1. “safe” under all symmetric loss functions: for all                 : 

Second Example: logarithmic scoring rule

Safety

P¤ 2 P¤

Loss : Y £A! [0;1]

Loss(Y; q) = ¡ log q(Y )

±P ±( open(c)) =

µ
1

3
;
2

3
;0

¶
; ±P ±( open(b)) =

µ
1

3
;0;

2

3

¶

A= set of prob. mass fn. on fa; b; cg
=H(1/3)

EP±[Loss(Y; ±P±(X))] = EP¤[Loss(Y; ±P±(X))]

What about nonsymmetric losses? 

• ‘asymmetric’ means e.g. that if the car is behind door B, it is 

a Ferrari; if it is behind door C, it is a Fiat Panda

• Now pretending that Monty chooses by 

tossing a fair coin is neither safe nor 

minimax optimal!

• Except for asymmetric versions of log-

loss! Then fair-coin assumption is still both 

safe and minimax optimal!
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• ..., i.e. use 

is

1. “safe”

2. minimax optimal 

3. admissible

hence PRETTY ADEQUATE

....under all symmetric decision problems and all, 

even asymmetric Kelly gambling problems

Assuming an Unbiased Monty... 

P±(Y = b j X = open(c)) := 2=3

Unbiased Monty

• Straightforward imprecise probability gives dilation

• Straightforward subjective Bayes is problematic for 

me: why would Monty be unbiased??

• Safe Probability Approach: if you are willing to make 

some assumption about loss function, it is safe to 

assume that Monty tosses a fair coin

Dependence on Task

• Safe Probability Approach: if you are willing to make 

some assumption about loss function, it is safe to 

assume that Monty tosses a fair coin

• This means that if you are told that the loss function 

is asymmetric, you may want to change your 

distribution

– Similarly, if you’re told in dilation problem that the probability 

that you have to make a prediction depends on V, you don’t 

want to ignore V any more

– Similarly, if, in ‘objective Bayes’, you change the sampling 

plan, you want to change the prior

– This is the price we pay for cooking a Bayesian omelet 

with imprecise eggs

Conclusion: Towards A Theory of 

“Safe Probability”

• Compromise between ‘strict’ Bayes and 

imprecise probability theory

• has unique representative      

as in Minimum Description Length, 

objective Bayes, fiducial inference, 

‘MaxEnt...

• One absolutely crucial difference: 

we restrict use of       to subset of  

all possible prediction tasks;       

eqv. 

we ‘condition’ on the    

task   


