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Imprecision in statistics

– hide/neglect imprecision!

– model imprecision away!

!! take imprecision into account in a reliable way!

!! imprecision as a modelling tool
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1. Introduction

Statistics

?

6

data generation process (DGP)

Data
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Two kinds of imprecision

data imprecision: imprecise observations, data are subsets of the
intended sample space

* imprecise observations of something precise → epistemic

* precise observations of something imprecise
≈

→ ontic

Couso & Dubois (2014, IJAR), Couso, Dubois & Sánchez (2014,
Springer)

model imprecision: imprecise probability models

P(Data⋃︀⋃︀Parameter) ,

maybe also P(Parameter)

set-valued approaches: take sets of values/probability distributions
as the basic entity
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On the power of IP in statistical modelling

defensive point of view

IP protects against the potentially disastrous consequences of applying
standard procedures under violated assumptions → robustness in:

frequentist and

Bayesian settings

Augustin et al.: 7 / 54



On the power of IP in statistical modelling

offensive point of view
IP is a most powerful methodology, allowing for

separation of variability (variance) from indeterminism

active modelling of ignorance

active modelling of conflicting/surprising information

active use of weak knowledge that can not be used in the traditional
setting
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The mantra of statistical modelling

Box & Draper (1987, Empirical Model Building and Response Surfaces, p. 424)

“Essentially, all models are wrong,

but some of them are useful”,

and sometimes dangerous

Augustin et al.: 11 / 54



The mantra of statistical modelling

Box & Draper (1987, Empirical Model Building and Response Surfaces, p. 424)

“Essentially, all models are wrong,

but some of them are useful”,

and sometimes dangerous

Augustin et al.: 11 / 54



The mantra of statistical modelling

Box & Draper (1987, Empirical Model Building and Response Surfaces, p. 424)

“Essentially, all models are wrong,

but some of them are useful”,

and sometimes dangerous

Augustin et al.: 11 / 54



Assumptions may matter!
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Figure: Densities of the Normal(0,1) and the Cauchy(0,0.79) distribution.
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Assumptions may matter!

Consider sample mean X .

if X1, . . . ,Xn ∼ N(𝜇,1) (normally distributed), then

X̄ ∼ N(𝜇,
1

n
)

Learning from the sample, with increasing sample size variance of X
decreases.

if X1, . . . ,Xn ∼ 𝒞(𝜇,1) (Cauchy-distributed), then

X ∼ C(𝜇,1)

Distribution does not depend on n, no learning via sample mean
possible
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Assumptions may matter! robustness

many optimal procedures show very bad properties under minimal
deviations from the ideal model

instead of f (x ⋃︀⋃︀𝜗): model "approximately f (x ⋃︀⋃︀𝜗) ", i.e. consider all
distribution "close to f (x ⋃︀⋃︀𝜗) "
→ neighbourhood models
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Huber & Strassen approach

Huber & Strassen (1973, AnnStat): globally least favorable pairs for
optimal Neyman-Person testing between two-monotone surveyed, e.g., in
Augustin, Walter & Coolen (2014, Intro IP, Wiley)

* applicable to most neighborhood models of precise probabilities

* extension to neighborhood models of many IP models

* construction procedures

* going beyond two-monotonicity
▸ parametrically constructed models
▸ locally least favorable pairs
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Bayesian inference with sets of priors I: ignorance

so-called ’noninformative priors’ do contain information

consider set of all (non-degenerated) distributions instead, e.g., Walley
(1996, JRSSB), Benavoli & Zaffalon (2012, JSPI)
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Bayesian inference with sets of priors II: prior-data conflict

Bayesian models are understood to express prior knowledge (or to
"borrow strength")

what happens when this prior konwledge is wrong?

example: X1, . . . ,Xn i.i.d data, Xi ∼ 𝒩(𝜇,𝜎
2
0
)

conjugated prior: 𝜇 ∼ 𝒩(𝜈, 𝜚2) then

𝜈′ =

x̄𝜌2 + 𝜈 ⋅ 𝜎
2

n

𝜌2 + 𝜎2

n

𝜌2
′

=

𝜌2 ⋅ 𝜎
2

n

𝜌2 + 𝜎2

n
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Bayesian inference with sets of priors II: prior-data conflict

let, for sake of simplicity, 𝜚2 = 𝜎2

n , then

𝜇̂ = 𝜈′ =
x̄ + 𝜈

2

and

𝜚2
′

=

𝜚4

2𝜚2
=

𝜚2

2
.

then, e.g.,
x̄ = 0.9 and 𝜈 = 1.1

and
x̄ = −100 and 𝜈 = 102

lead to the same distribution (equal mean and variance )

general effect for canonical exponential families

much more intuitive behaviour when prior parameters are imprecise,
e.g., are interval-valued

Augustin et al.: 20 / 54



Bayesian inference with sets of priors II: prior-data conflict

Source: Walter & Augustin (2009, JStTheorPract, p. 268)
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Bayesian inference with sets of priors II: prior-data conflict

Source: Walter & Augustin (2009, JStTheorPract, p. 268)
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Ontic imprecision: example

Plass, Fink, Schöning & Augustin (2015, ISIPTA)

pre-election study (GLES 2013: German Longitudinal Election Study)

a considerable amount of voters is still undecided, but mainly only
between two or three parties

these voters constitute different subgroups of there own with specific
characteristics (which have to be neglected in the traditional analysis)

here, for the moment, NO forecast aimed at, instead analysis of
individual preferences as they are
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Ontic imprecision: modelling idea

"precise observations of something imprecise"

modelled by random conjunctive sets

change sample space 𝒮 = {CD,SPD,Green,Left, . . .} into 𝒮∗ ⊂ 𝒫(𝒮)

oberservations are precise observations in 𝒮∗ and can be treated like
tradtional categorical data

whole statistical modelling framework can be applied, here logistic
regression

for each non-empty element of 𝒮∗ vector of regression coefficients
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Ontic imprecision: example, Plass et al (2015, Table 4)
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Epistemic data imprecision

imprecise observations of something precise

missing data (refusals, treatment design)

data protection

data merging with partially overlapping categories

secondary data analysis

forecasts derived from set-valued (ontic) observations

refined responses of primary refusals, typically coarsening/missing not
at random
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Spinney of deficiencies
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The two-layers perspective

ideal Yi
� effects � ideal Xi

? ?

? ?

6

data - inference � data

deficiency model deficiency model

observable Y∗i observable X∗i
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Traditional treatment of deficiencies

model the deficiency process!

characterize situations where the deficiency may be ignored or when
one can correct for it!

but typically very restrictive – often untestable – asumptions needed
to ensure identifiability = precise solution
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Traditional treatment of deficiencies

For instance, in measurement error models (“classical model of testing
theory”):

measurement error model must be known precisely
– type of error, especially assumptions on (conditional) independence

– independence of true value

– independence of other covariates

– independence of other measurements

– type of error distribution
– moments of error distribution

validation studies typically not available
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Interval data: example

German General Social Survey (ALLBUS) 2010:
2827 observations in total, approx. 2000 report personal income (30%
missing). An additional 10% report only income brackets.
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Interval data: example

1 we see heaping at 1000 e, 2000 e, . . ., less so at 500 e, 1500 e, . . .

2 both heaping and grouping depend on the amount of income reported.

3 missingness (some 20% of the data) might as well depend on the
amount of income.

Consequences:

1 missingness, grouping, and heaping can often be represented by
intervals.

2 missingness, grouping, and heaping will rarely conform to the
assumption of “coarsening at random” (CAR).

3 missingness, grouping, and heaping add an additional type of
uncertainty apart from classical statistical uncertainty. This
uncertainty can’t be decreased by sampling more data.
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Wrongly assuming CAR (binary data)

Source: Plass, Augustin, Cattaneo, Schollmeyer (2015, ISIPTA)
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

"The credibility of inference decreases with the strength of the assumptions
maintained." (Manski (2003, p. 1))
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Reliable inference instead of overprecision!!

Consequences to be drawn from the Law of Decreasing Credibility:

adding untenable assumptions to produce precise solution may distroy
credibility of statistical analysis, and therefore its relevance for the
subject matter questions.

make realistic assumptions and let the data speak for themselves!

the results may be imprecise, but are more reliable

the extent of imprecision is related to the data quality!

as a welcome by-product: clarification of the implication of certain
assumptions

often still sufficient to answer subjective matter question
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Much IP work on epistemic date impprecision, e.g.,

de Cooman & Zaffalon (2004, AI), Zaffalon & Miranda (2009, JAIR)

Utkin & Augustin (2007, IJAR), Troffaes & Coolen (2009, IJAR)

Utkin & Coolen (2011, ISIPTA)

Cattaneo & Wiencierz (2012, IJAR)

Schollmeyer & Augustin (2015, IJAR)

Denoeux (2014, IJAR)
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Relation to work in econometrics, biometrics and engineering

partial identification: e.g., Manski (2003, Springer), Tamer (2010,
Annu Rev Econ)

systematic sensitivity analysis: e.g., Vansteelandt, Goetghebeur,
Kenword, Molenberghs (2006, Stat. Sinica)

reliable computing, interval computation: e.g., Ferson et al. (2007,
Sandra TR), Nguyen, Kreinovich, Wu & Xiang (2011, Springer)
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Recent likelihood approach

Plass, Augustin, Cattaneo, Schollmeyer (2015, ISIPTA)

utilize invariance of likelihood under paramter-transformation

observable part: set-valued observations, parameter 𝜗, maximum
likelihood estimator 𝜗

latent part: parameter of interest 𝛾

related via observation model: expressed by mapping Φ

set-valued maximum likelihood estimator Γ̂ = {𝛾⋃︀Φ(𝛾) = 𝜗}

application also to some basic logistic regression models

Augustin et al.: 42 / 54



Estimating equations

Generalizing from the linear case, suppose there is a consistent (score-)
estimating equation for the ideal model {𝒫𝜗 ⋃︀𝜗 ∈ Θ}, i.e.:

∀𝜗 ∈ Θ ∶ E𝜗(𝜓(X ,Y ;𝜗)) = 0

With interval data, one gets a set of estimating equations, one for each
random vector (selection) (X ,Y ) ∈ (X,Y):

Ψ(X,Y;𝜗) ∶= {𝜓(X ,Y ;𝜗) ⋃︀X ∈ X,Y ∈Y}
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Concluding remarks

law of decreasing credibility !

reliable use of information

set-valued analysis: imprecise data, imprecise models

imprecise but reliable results; often sufficient!

natural behaviour of imprecision!

use this actively in modelling!

towards a general framework for reliable analysis of non-idealized data!
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On the power of IP in statistical modelling

defensive point of view

IP protects against the potentially disastrous consequences of applying
standard procedures under violated assumptions → robustness in:

frequentist and

Bayesian settings
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On the power of IP in statistical modelling

offensive point of view
IP is a most powerful methodology, allowing for

separation of variability (variance) from indeterminism

active modelling of ignorance

active modelling of conflicting/surprising information

active use of weak knowledge that can not be used in the traditional
setting
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Future directions

Popularize the defensive point of view

case studies, illustrating the power of imprecision

robust procedures for generalized linear models etc.

cautious data completion for generalized linear models etc.

(disc. with H. Rieder): for each result complement p-value routinely by
stability level: smallest level of contamination where the result is no
longer significant

Propagate the offensive view

case studies, illustrating the power of imprecisions

separation of variability (variance) from indeterminism

active modelling of ignorance

active modelling of conflicting/surprising information

active use of weak knowledge that can not be used in the traditional
setting
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Future directions

statisticians start to think from data
→ improve understanding of imprecise sampling models

▸ imprecise probabilities for the observables!
▸ generalized sampling theory: imprecise selection probabilities
▸ utilize variety of independence concepts (model slight dependence)
▸ develop methodology of estimation from imprecise sampling models

develop simulation techniques for imprecise probabilities

how to handle regression models?
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Future directions

develop heuristics, "semi-imprecise" methods
"IP should make life better or easier (or both)" (Frank Coolen)

develop direct methods
▸ leave the necessarily more complicated "set-of traditional model views"
▸ direct processing of information (e.g., statistics with desirable
gambles?)
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Future directions

develop a methodology for statistical modelling with sets of models

▸ generalized linear models
▸ nonparametric regression models → smoothing
▸ variable selection
▸ realistic measurement error and random effect models
▸ importance of unbiased estimation equations

▸ evaluation / comparision of models with different level of imprecision
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The two-layers perspective

ideal Yi
� effects � ideal Xi

? ?

? ?

6

data - inference � data

deficiency model deficiency model

observable Y∗i observable X∗i
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