HITTING TIMES FOR IMPRECISE CONTINUOUS-TIME MARKOV CHAINS Rick Reubsaet, Erik Quaeghebeur, Thomas Krak

Time-Homogeneous Continuous-time Markov Chains

- Models process *P* moving between states over time
 - Assumes Markov property: only depends on current state
 - Assumes time-homogeneity: no dependence on time
- Transition probabilities for a given time duration specified through rate matrix Q
- Hitting time: time until the process reaches some fixed subset of states A

Figure 1: A time-homogeneous continuous-time Markov chain P and its rate matrix Q.

Imprecise Markov Chains

- Consider instead of a single process, a set of processes \mathcal{P} , parameterised by a set of rate matrices Q
- Can contain three types of processes:
 - Markovian & time-homogeneous
 - Markovian, but not necessarily timehomogeneous
 - General processes
- -> More robust to structural assumptions: do not need to know whether the process is Markovian or time-homogeneous
- \rightarrow More robust to parameter uncertainty: no longer need to precisely specify Q!
- Compute upper and lower bounds (upper and lower expectations) for desired inferences
 - \rightarrow Considers all processes in \mathcal{P} , without weighting them

State-of-the-Art [1]

- The upper and lower expected hitting times are the same for all three types of imprecise Markov chains
 - \rightarrow Can use computational inference tools suited for one specific type for all three types!
- Expected hitting times can be computed by solving a relatively simple non-linear system of equations

Problem:

Previous results currently assume that the probability of eventually hitting the set of states under consideration *must be greater than 0*, which results in a bounded hitting time.

[1] T. Krak. "Computing Expected Hitting Times for Imprecise Markov Chains". In: International Conference on Uncertainty Quantification & Optimisation. Springer. 2020, pp. 185-205.

Our Contribution

- Divided the states into three classes.
- When starting in these classes:
 - *B*: zero lower probability to reach *A*
 - \mathcal{U} : non-zero lower probability to reach A, but non-zero upper probability to reach \mathcal{B}
 - *Z*: remaining states
- *Z* essentially behaves independently from \mathcal{B} and \mathcal{U} and this subspace satisfies the original assumption of Krak's work

- \rightarrow Recovered previous results for both upper and lower expected hitting times
- \mathcal{B} and \mathcal{U} have been shown to have infinite upper expected hitting times for all three types of imprecise Markov chain
- \mathcal{B} and \mathcal{U} have been shown to have infinite lower expected hitting times for all three types of imprecise Markov chain, provided that a weaker assumption than Krak's assumption is met:
 - \rightarrow The reachability behaviour of all $Q \in Q$ with respect to A is assumed to be similar