Uncertainty Representations and Reasoning
 A course on uncertainty modeling beyond probability theory

Erik Quaeghebeur

Course overview

Goal

Introduction to uncertainty modeling approaches that go beyond classical probability theory

General information

- Elective in TU/e's Data Science \& Artificial Intelligence Master program
- Study load: circa 140 hours (5 ECTS)
- First edition in 2022-2023 Q1 (Sep-Nov)
- Students: circa 40, all familiar only with classical probability and statistics

Learning activities

Theory	Assignment	'Instructions'
- Lectures	- Literature study (report)	• Explanation course organization
• Practice exercises	• Poster presentations	• Q\&A lectures, exercises,
		assignment

Schedule overview

- Quartile $=8$ contact session weeks +2 exam weeks
- Contact sessions:
- 16 sessions total: 2/week, each 2 blocks of 45 minutes (3 hours/week)
- lectures (18 blocks); instructions (6 blocks); poster presentations (8 blocks)

- Exam: 3 hours; resit possibility during exam week of next quartile

Grade composition
50/50 for assignment/exam
Support options

- Q\&A sessions and lecture breaks • Online Forum • Direct message to lecturer

Assignment

Goal
Understand and explain to fellow students how different uncertainty modeling approaches each can deal with a specific application topic

Application topics
-Classification •Clustering •Decision trees •Markov chains •Graphical models

Organization

Assessment

- Formative: Midterm (session 7-8) • Peer review by fellow students using rubrics - Summative: Final (session 14-15) - Good participation was important (24\%)

Scale		Problematic Insufficient 0 points 2 points	Sufficient 3 points	Good 4 points	Excellent 5 points
Structure	7.5\%	presence and quality of structure and structuring elements (sectioning, paragraphs, lists, tables, figures)			
Report Clarity	20\%	degree to which the content is explainable by the reader based on a reading (argumentation steps, examples, illustrations)			
Language	5\%	quality of grammar, spelling, and formulation			
Notation	5\%	introduction and appropriate choice/use of formal notation			
Mathematics	7.5\%	presence, clarity, and integration of math expressions in the text			
Referencing	5\%	degree text is supported by sufficient on-topic references; completeness of entries			
Poster Balance	6.5\%	balance between text/math and illustrations/examples; suitability for live explanation (storyline, key takeaways)			
Presentation	6.5\%	degree of preparation and capability to answer questions			
\#Approaches					

Observations

[^0]
Lectures, Exercises, and Exam

Goal
For each of the uncertainty modelling approaches discussed:

- know and understand the foundations \& interpretations
- obtain the skills to solve basic inference and decision problems

Lecturing approach

- Theory lectures in classical style
- Illustrative examples mixed in
- Successful opportunities for interaction
- Students were encouraged to interrupt - Activating questions from lecturer

Lecture topics \& Uncertainty modeling approaches
2. Limitations of probability (arguments to go beyond) 3. Belief functions
4. Possibility
5. Fuzzy sets
6. 2-Monotone capacities
7. Probability intervals 8. Credal sets
9. Interval expectation ('prevision' mentioned)

Much of the actual content was inspired by materials from the SIPTA Schools

Focus areas

Each approach is discussed in generally the same way:

- Foundations: basic concepts \& axioms • Learning models from data (sometimes)
- Interpretation • Multivariate models (often)
- Inference: obtaining values/bounds - Decision making (often)

Practice exercises

- On-line quiz per lecture (ungraded, repeatable) • Multiple-choice and open questions - Automated feedback and model answers - Theory and calculation questions
- Students generally did not participate in a timely manner

Exam

- 30 questions (multiple-choice and open)
- Practice exercises were mostly representative of exam questions
- Level of attainment expected on beforehand was not achieved in general

Problems, Challenges, and Plans

Goal (for us teachers, this time)
Get feedback to improve the course in the coming years

More attention to practice exercises

Problem Exam results showed a lower-than-aimed-for proficiency solving exercises Challenge How do we get students to make the practice exercises in a timely manner? Plan Make the practice exercises a more integrated part:

- Incentivize by making them count for the grade • Create time by removing content
- Create dedicated practice exercise Q\&A blocks But which content?

Providing more didactic literature

Problem Reports \& poster presentations showed that many students encountered difficulties understanding the content of a good deal of the provided literature Plan Improve the list of provided literature
Challenge Where do we find a sufficiently broad set of didactically written papers?

[^0]: - Participation was generally enthusiastic - Most pairs kept to the literature provided
 - Pairs often struggled to integrate material from papers using approaches discussed towards the end of the lecture series

